Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 :
B=15-3x-3y
a) x+y-5=0
=>x+y=-5
B=15-3x-3y <=> B=15-3(x+y)
Thay x+y=-5 vào biểu thức B ta được :
B=15-3(-5)
B=15+15
B=30
Vậy giá trị của biểu thức B=15-3x-3y tại x+y+5=0 là 30
b)Theo đề bài ; ta có :
B=15-3x-3.2=10
15-3x-6=10
15-3x=16
3x=-1
\(x=\frac{-1}{3}\)
Bài 2:
a)3x2-7=5
3x2=12
x2=4
x=\(\pm2\)
b)3x-2x2=0
=> 3x=2x2
=>\(\frac{3x}{x^2}=2\)
=>\(\frac{x}{x^2}=\frac{2}{3}\)
=>\(\frac{1}{x}=\frac{2}{3}\)
=>\(3=2x\)
=>\(\frac{3}{2}=x\)
c) 8x2 + 10x + 3 = 0
=>\(8x^2-2x+12x-3=0\)
\(\Rightarrow\left(2x+3\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+3=0\\4x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{1}{4}\end{cases}}}\)
vậy \(x\in\left\{-\frac{3}{2};\frac{1}{4}\right\}\)
Bài 5 đề sai vì |1| không thể =2
\(B=x^2+2xy+y^2-2x-2y\)
\(B=\left(x+y\right)^2-2\left(x+y\right)\)
\(B=3^2-2\cdot3\)
\(B=9-6\)
\(B=3\)
A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4.
Trước hết ta thu gọn đa thức
A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 = x2 + 2xy + y3
Thay x = 5; y = 4 ta được:
A = 52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.
Vậy A = 129 tại x = 5 và y = 4.
a) A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4.
Trước hết ta thu gọn đa thức
x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 = x2 + 2xy + y3
Thay x = 5; y = 4 ta được:
52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.
129 tại x = 5 và y = 4.
Xin lỗi bạn Cool chỉ biết làm cách vắn tắt thôi nếu vắn tắt quá thì cho Cool xin lỗi vì Cool không giỏi dạng này
A=[(X\(^2\) -2XY+Y\(^2\) )+2(X-Y)+1]+(Y\(^2\) -8Y+16)]
(X-Y+1)\(^2\)+(Y-4)\(^2\)
\(\Rightarrow=0\)
=>Amin=0 khi y=4;x=3
Đặt \(KK=x^2-2xy+2y^2+2x-10y+17\)
\(KK=\left(x^2-2xy+y^2\right)+y^2+2x-10y+17\)
\(KK=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]+\left(y^2-8y+16\right)\)
\(KK=\left(x-y+1\right)^2+\left(y-4\right)^2\)
Mà \(\left(x-y+1\right)^2\ge0\)
\(\left(y-4\right)^2\ge0\)
\(\Rightarrow KK\ge0\)
Dấu " = " xảy ra khi :
\(\hept{\begin{cases}x-y+1=0\\y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)
Vậy \(KK_{Min}=0\Leftrightarrow\left(x;y\right)=\left(3;4\right)\)