Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}\) E= \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
\(\frac{1}{2}\) E = \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\)
\(\frac{1}{2}E\) = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}\)
\(\frac{1}{2}E\) = \(\frac{1}{2}-\frac{1}{9}\)
\(\frac{1}{2}E\) =\(\frac{7}{18}\)
=> E = \(\frac{7}{9}\)
E=\(\frac{1}{3}+\frac{1}{6}+....+\frac{1}{28}+\frac{1}{36}\)
\(\frac{1}{2}E=\frac{1}{6}+\frac{1}{12}+...+\frac{1}{56}+\frac{1}{72}\)
\(\frac{1}{2}E=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}+\frac{1}{8.9}\)
\(\frac{1}{2}E=\frac{3-2}{2.3}+\frac{4-3}{3.4}+...\frac{8-7}{7.8}+\frac{9-8}{8.9}\)
\(\frac{1}{2}E=\frac{3}{2.3}-\frac{2}{2.3}+\frac{4}{3.4}-\frac{3}{3.4}+...+\frac{8}{7.8}-\frac{7}{7.8}+\frac{9}{8.9}-\frac{8}{8.9}\)
\(\frac{1}{2}E=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(\frac{1}{2}E=\frac{1}{2}-\frac{1}{9}=\frac{7}{18}\)
E=\(\frac{7}{18}:\frac{1}{2}=\frac{7}{9}\)
\(P=\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{6}\right)+...+\left(1-\dfrac{1}{1225}\right)+\left(1-\dfrac{1}{1275}\right)\\ \Rightarrow\dfrac{P}{2}=\left(\dfrac{1}{2}-\dfrac{1}{6}\right)+\left(\dfrac{1}{2}-\dfrac{1}{12}\right)+...+\left(\dfrac{1}{2}-\dfrac{1}{2550}\right)\\ =\left(\dfrac{1}{2}-\dfrac{1}{2\cdot3}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3\cdot4}\right)+...+\left(\dfrac{1}{2}-\dfrac{1}{50\cdot51}\right)\\ =\dfrac{1}{2}\cdot49-\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)\\ =\dfrac{49}{2}-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{50}-\dfrac{1}{51}\right)\\ =\dfrac{49}{2}-\dfrac{1}{2}+\dfrac{1}{51}=\dfrac{1225}{51}\\ \Rightarrow P=\dfrac{2450}{51}\)
25645