K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2018

a)\(\dfrac{2^{15}.3^8}{2^6.3^6.2^9}\)\(\dfrac{ }{ }\)=\(^{3^2}\)=9

b)\(\dfrac{2^{12}.3^{10}+2^9.3^9.2^3.15}{-2^{12}.3^{12}-2^{11}.3^{11}}\)=\(\dfrac{2^{11}.3^{11}.\left(1+15\right)}{2^{11}.3^{11}\left(-2.3-1\right)}\)

=\(\dfrac{32}{-21}\)

c)\(\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}\)=\(\dfrac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}\)=\(-\dfrac{1}{3}\)

em dựa vào vd \(\dfrac{4^{16}}{2^8}\)= \(\dfrac{\left(2^2\right)^{16}}{2^8}=\dfrac{2^{16\cdot2}}{2^8}=2^4=16\)

20 tháng 6 2018

\(a,A=\left(3\dfrac{5}{6}-1\dfrac{1}{3}\right)\left(3\dfrac{4}{15}-2\dfrac{3}{5}\right)\)
\(\Leftrightarrow A=\left(3+\dfrac{5}{6}-1+\dfrac{1}{3}\right)\left(3+\dfrac{4}{15}-2+\dfrac{3}{5}\right)\)
\(\Leftrightarrow A=\left[\left(3-1\right)+\left(\dfrac{5}{6}+\dfrac{1}{3}\right)\right]+\left[\left(3-2\right)+\left(\dfrac{4}{15}+\dfrac{3}{5}\right)\right]\)
\(\Leftrightarrow A=\left[2+\left(\dfrac{5}{6}+\dfrac{2}{6}\right)\right]+\left[1+\left(\dfrac{4}{15}+\dfrac{9}{15}\right)\right]\)
\(\Leftrightarrow A=\left(2+\dfrac{7}{6}\right)+\left(1+\dfrac{13}{15}\right)\)
\(\Leftrightarrow A=\left(2+1+\dfrac{1}{6}\right)+\left(1+\dfrac{13}{15}\right)\)
\(\Leftrightarrow A=3\dfrac{1}{6}+1\dfrac{13}{15}\)
Vậy...

20 tháng 6 2018

\(b,B=\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(\Leftrightarrow B=\dfrac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.\left(2^3.3.5\right)}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
\(\Leftrightarrow B=\dfrac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(\Leftrightarrow B=\dfrac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(\Leftrightarrow B=\dfrac{\left(2^{10}.3^{10}\right)\left(1+5\right)}{\left(2^{11}.3^{11}\right)\left(2.3-1\right)}\)
\(\Leftrightarrow B=\dfrac{6}{\left(2.3\right).5}\)
\(\Leftrightarrow B=\dfrac{6}{6.5}\)
\(\Leftrightarrow B=\dfrac{1}{5}\)
Vậy....

26 tháng 7 2017

\(A=\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)

\(=\dfrac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8+\left(2.3\right)^8.2^2.5}\)

\(=\dfrac{4^5.3^8-2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}\)

\(=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)

\(=\dfrac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}\)

\(=\dfrac{-2}{6}=\dfrac{-1}{3}\)

26 tháng 7 2017

\(A=\dfrac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8+\left(2.3\right)^8.2^2.5}=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}=\dfrac{2^{10}.3^8.\left(1-3\right)}{2^{10}.3^8.\left(1+5\right)}=\dfrac{-2}{6}=-\dfrac{1}{3}\)

2 tháng 7 2017

\(a,\) \(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(=\frac{2^{12}.3^{10}+\left(2.3\right)^9.2^3.3.5}{2^{12}.3^{12}-\left(2.3\right)^{11}}\)
\(=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\frac{\left(2^{12}.3^{10}\right)\left(1+5\right)}{\left(2^{11}.3^{11}\right)\left(2.3-1\right)}\)
\(=\frac{\left(2^{12}.3^{10}\right).6}{\left(2^{11}.3^{11}\right).5}\)
\(=\frac{2.6}{3.5}\)
\(=\frac{2.2}{5}\)
\(=\frac{4}{5}\)
\(b,\) \(\frac{2^{15}.9^4}{6^3.8^3}\)
\(=\frac{2^{15}.3^8}{2^3.3^3.2^9}\)
\(=\frac{2^{15}.3^8}{2^{12}.3^3}\)
\(=2^3.3^5\)
\(=8.243\)
\(=1944\)
Chúc bạn học tốt ^^


 

2 tháng 7 2017

a) \(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\frac{\left(2^2\right)^6.\left(3^2\right)^5+6^9.120}{\left(2^3\right)^4.3^{12}-6^{11}}=\frac{2^{12}.3^{10}+6^9.120}{2^{12}.3^{12}-6^{11}}=\frac{6^{10}.4+6^{10}.20}{6^{12}-6^{11}}=\frac{6^{10}.\left(4+20\right)}{6^{11}.\left(6-1\right)}=\frac{6^{11}.4}{6^{11}.5}=\frac{4}{5}\)

b) \(\frac{2^{15}.9^4}{6^3.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}=\frac{2^{15}.3^8}{2^3.3^3.2^9}=\frac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5=1944\)

c) \(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{\left(4.2\right)^{10}+4^{10}}{\left(2^3\right)^4+4^6.4^5}=\frac{4^{10}.2^{10}+4^{10}}{2^{12}+4^6.4^5}=\frac{4^{10}.\left(2^{10}+1\right)}{4^6+4^6.2^{10}}=\frac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(1+2^{10}\right)}=\frac{4^{10}}{4^6}=4^4=256\)

26 tháng 8 2017

\(B=\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\dfrac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(6\right)^8.6}{2^{10}.3^8+\left(6\right)^8.20}=\dfrac{2^{10}.3^8-2\left(3.2\right)^8.6}{2^{10}.3^8+\left(3.2\right)^8.20}\)

\(B=\dfrac{2^{10}.3^8-2.3^8.2^8.6}{2^{10}.3^8+3^8.2^8.20}=\dfrac{3^8\left(2^{10}-2.2^8.6\right)}{3^8\left(2^{10}+2^8.20\right)}=\dfrac{2^{10}-2^9.6}{2^{10}+2^8.20}\)

\(B=\dfrac{2^8\left(2^2-2.6\right)}{2^8\left(2^2+20\right)}=\dfrac{2^2-2.6}{2^2+20}=\dfrac{4-12}{4+20}=\dfrac{-8}{24}=\dfrac{-1}{3}\)

\(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}=\dfrac{2^{10}\cdot3^8\cdot\left(1-3\right)}{2^{10}\cdot3^8\cdot6}=\dfrac{-2}{6}=\dfrac{-1}{3}\)

10 tháng 7 2018

E = \(\frac{\left(2^2\right)^6.\left(3^2\right) ^5+\left(2.3\right)^9.2^3.3.5}{-\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)

E  =  \(\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{-2^{12}.3^{12}-2^{11}.3^{11}}\)

E = \(\frac{2^{12}.3^{10}+2^{13}.3^{10}.5}{-2^{11}.3^{11}.\left(2.3+1\right)}\)

E = \(\frac{2^{12}.3^{10}.\left(1+5\right)}{-2^{11}.3^{11}.7}\)

E = \(\frac{2^{12}.3^{10}.6}{-2^{11}.3^{11}.7}\)

E=\(\frac{-2^{11}.\left(-2\right).3^{10}.6}{-2^{11}.3^{10}.3.7}\)

E = \(\frac{-2.6}{3.7}=-\frac{4}{7}\)

Vậy E = -4/7 

Ý F bn lm tương tự nha 

13 tháng 7 2018

thank bn nha

19 tháng 12 2017

\(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)

\(=\frac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8.\left(1+5\right)}\)

\(=\frac{-2}{6}\)

\(=\frac{-1}{3}\)

a: \(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)

\(=\left(6-5-3\right)+\left(-\dfrac{2}{3}-\dfrac{5}{3}+\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\right)\)

\(=-2-\dfrac{1}{2}=-\dfrac{5}{2}\)

b: \(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}=\dfrac{2^{10}\cdot3^8\cdot\left(-2\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=-\dfrac{1}{3}\)