Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = (3.23)3.3-(2.3)4.25
= 33.(23)3.3-24.34.25
= 34.29-29.34
=0
\(a,a^3\cdot a^9=a^{12}\)
\(b,\left(a^5\right)^7=a^{35}\)
\(c,\left(a^6\right)^4\cdot a^{12}=a^{24}\cdot a^{12}=a^{36}\)
\(d,4\cdot5^2-2\cdot3^2=2^2\cdot5-2\cdot3^2=2\cdot\left(2\cdot5+3^2\right)=2\cdot19=38\)
\(e,5^6:5^3+3^3\cdot3^2=5^3+3^5\)
a,a3.a9=a3+9=a12
b,(a5)7=a5.7=a35
Mấy câu tiếp theo bn lám tương tự!
a, \(\frac{3}{8}+\frac{11}{13}-\frac{9}{13}\)
=\(\frac{3}{8}+\frac{2}{13}\)
=\(\frac{55}{104}.\)
b, \(\frac{2}{7}.\left(\frac{5}{9}+\frac{4}{9}\right)+\frac{2}{7}\)
=\(\frac{2}{7}.\frac{9}{9}+\frac{2}{7}\)
=\(\frac{2}{7}+\frac{2}{7}\)
=\(\frac{4}{7}\)
c, \(\frac{3}{11}.\left(\frac{3}{5}-\frac{5}{3}\right)-\frac{3}{10}.\left(\frac{1}{3}-\frac{2}{5}\right)\)
=\(\frac{3}{11}.-\frac{16}{15}-\frac{3}{10}.-\frac{1}{15}\)
=\(-\frac{16}{55}--\frac{1}{50}\)
=\(-\frac{149}{550}.\)
d, \(\frac{-3}{4}.\frac{11}{23}+\frac{3}{23}.\frac{31}{17}-\frac{3}{17}.\frac{19}{23}\)
=\(-\frac{33}{92}+\frac{93}{391}-\frac{57}{391}\)
=\(-\frac{417}{1564}\)
e, \(\frac{3}{17}.\frac{11}{23}+\frac{3}{23}.\frac{31}{17}-\frac{3}{17}.\frac{19}{23}\)
=\(\frac{33}{391}+\frac{93}{391}--\frac{254}{391}\)
=\(\frac{380}{391}.\)
g, \(\frac{3}{7}.\frac{-5}{12}+\frac{11}{17}:\frac{5}{-12}\)
=\(-\frac{5}{28}+-\frac{132}{85}\)
= \(-1.731512605.\)
k cho mình nha làm mỏi tay quá ,.....................kết bạn với mình nha.......................
a) \(=\frac{6}{7}+\frac{5}{8}:5-\frac{3}{16}.4\)
\(=\frac{6}{7}+\frac{1}{8}-\frac{3}{4}\)
\(=\frac{13}{56}\)
b) \(=\frac{3}{2}+\frac{1}{2}.\frac{7}{18}:\frac{7}{12}\)
\(=\frac{3}{2}+\frac{1}{3}\)
\(=\frac{11}{6}\)
\(1)A=a\frac{1}{3}+a\frac{1}{4}-a\frac{1}{6}=a\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{6}\right)=a\frac{5}{12}\)
Thay \(a=-\frac{3}{5}\) vào A,ta đc:
\(A=-\frac{3}{5}.\frac{5}{12}=-\frac{1}{4}\)
\(2)B=b\frac{5}{6}+b\frac{3}{4}-b\frac{1}{2}=b\left(\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)=b\frac{13}{12}\)
Thay \(b=\frac{12}{13}\) vào B, ta đc: \(B=b\frac{13}{12}=\frac{12}{13}.\frac{13}{12}=1\)
Áp dụng tính chất phân phối, rồi tính giá trị biểu thức.
Chẳng hạn,
Với , thì
ĐS. ; C = 0.
Xem thêm tại: http://loigiaihay.com/bai-77-trang-39-phan-so-hoc-sgk-toan-6-tap-2-c41a5943.html#ixzz4eU1fQCGw
Câu 1 Tính
\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{20}+...+\frac{1}{2352}+\frac{1}{2450}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{4.5}+...+\frac{1}{48.49}+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{48}-\frac{1}{49}+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}=\frac{49}{50}\)
Câu 2 Tính
\(P=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{99}\right)\left(1-\frac{1}{100}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{98}{99}.\frac{99}{100}\)
\(=\frac{1.2.3...98.99}{2.3.4...99.100}=\frac{1}{100}\)
Câu 3
a) Ta có : M = 1 + 3 + 32 + 33 + ... + 3118 + 3119 (1)
=> 3M = 3 + 32 + 33 + 34 + ... + 3119 + 3120 (2)
Lấy (2) trừ (1) theo vế ta có :
3M - M = (3 + 32 + 33 + 34 + ... + 3119 + 3120) - ( M = 1 + 3 + 32 + 33 + ... + 3118 + 3119)
=> 2M = 3120 - 1
=> M = \(\frac{3^{120}-1}{2}\)
b) M = 1 + 3 + 32 + 33 + ... + 3118 + 3119
= (1 + 3 + 32) + (33 + 34 + 35) + ... + (3117 + 3118 + 3119)
= (1 + 3 + 32) + 33(1 + 3 + 32) + ... + 3117(1 + 3 + 32)
= 13 + 33.13 + ... + 3117.13
= 13(1 + 33 + ... + 3117) \(⋮\)13
=> M \(⋮\)13
M = 1 + 3 + 32 + 33 + ... + 3118 + 3119
= (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + ... + (3116 + 3117 + 3118 + 3119)
= (1 + 3 + 32 + 33) + 34(1 + 3 + 32 + 33) + ... + 3116(1 + 3 + 32 + 33)
= 40 + 34.40 + ... + 3116.40
= 40(1 + 34 + ... + 3116)
= 5.8.(1 + 34 + ... + 3116) \(⋮\)5
4) Tính
A = 2100 - 299 - 298 - ... - 22 - 2 - 1
=> 2A = 2101 - 2100 - 299 - 298 - 22 - 2 - 1
Lấy 2A trừ A theo vế ta có :
2A - A = (2101 - 2100 - 299 - 298 - 22 - 2 - 1) - (2100 - 299 - 298 - ... - 22 - 2 - 1)
=> A = 2101 - 2100 - 2100 + 1
=> A = 2101 - (2100 + 2100) + 1
=> A = 2101 - 2100 . 2 + 1
=> A = 1
Câu 5 a) C = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3C = 1.2.3 + 2.3.3 + 3.4.3 + .... + 99.100.3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
= 99.100.101
=> C = 99.100.101 : 3 = 333300
b) Ta có : D = 22 + 42 + 62 + ... + 982
= 22(12 + 22 + 32 + ... + 492
= 22 .(12 + 22 + 32 + ... + 492)
= 22.(1.1 + 2.2 + 3.3 + ... + 49.49)
= 22.[1.(2 - 1) + 2..(3 - 1) + 3(4 - 1) + ... + 49(50 - 1)]
= 22.[(1.2 + 2.3 + 3.4 + ... + 49.50) - (1 + 2 + 3 + 4 + ... + 49)]
Đặt E = 1.2 + 2.3 + 3.4 + ... + 49.50
=> 3E = 1.2.3 + 2.3.3 + 3.4.3 + .... + 49.50.3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 49.50.(51 - 48)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 49.50.51 - 48.49.50
= 49.50.51
=> E = 49.50.51/3 = 41650
Khi đó D = 22.[41650 - (1 + 2 + 3 + 4 + ... + 49)]
= 22.[41650 - 49(49 + 1)/2]
= 22.[41650 - 1225
= 22.40425
= 161700
=> D = 161700