K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

kiến thức lớp 8 chắc mới làm dc

\(A=\left(1+\frac{1}{\left(2-1\right)\left(2+1\right)}\right)\left(1+\frac{1}{\left(3-1\right)\left(3+1\right)}\right)+....+\frac{1}{\left(100-1\right)\left(100+1\right)}\)

\(A=\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{3^2}\right)......\left(1+\frac{1}{100^2}\right)\)

ok tự giải típ nhé

27 tháng 6 2016

A=(1+1/1.3)+........+(1+1/99.100)

=>A=[ (1.3+1)/(1.3 ) ] .[ (2.4+1)/(2.4) ] .... [ (99.101+1)/(99.101) ] 

=>A=( 4/1.3 ).( 9/2.4)......( 10000/99.101)

=>A=( 22/1.3).( 32/2..4).......( 1002/99.101)

=>A=\(\frac{2^2.3^2........99^2.100^2}{1.3.2.4.....99.101}\)

=>A=\(\frac{2.3....100.2.3.....100}{1.2.....99.3.4.....101}\)

=>A=\(\frac{100.2}{101}\)

=>A=\(\frac{200}{101}\)

Vậy A=\(\frac{200}{101}\)

24 tháng 6 2016

câu này khó thế

24 tháng 6 2016

cong nhan

26 tháng 6 2017

\(S=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+\dfrac{1}{4.6}+\dfrac{1}{5.7}\)

\(S=1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{5}-\dfrac{1}{7}\)

\(S=1+\dfrac{1}{2}-\dfrac{1}{6}-\dfrac{1}{7}=\dfrac{31}{21}\)

Chúc bạn học tốt!!!

26 tháng 6 2017

hình như bạn bị nhầm rồi thì phải tại vì nó có cả dấu trừ mà

11 tháng 10 2023

\(\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+..+\dfrac{1}{97.99}+\dfrac{1}{98.100}-\dfrac{49}{99}\)

\(=\dfrac{1}{2}\left[\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{1}{97.99}\right)+\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{99.100}\right)\right]-\dfrac{49}{99}\)

\(=\dfrac{1}{2}\left[1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+..+\dfrac{1}{98}-\dfrac{1}{100}\right]-\dfrac{49}{99}\)

\(=\dfrac{1}{2}\left[1-\dfrac{1}{99}+\dfrac{1}{2}-\dfrac{1}{100}\right]-\dfrac{49}{99}\)

\(=\dfrac{1}{2}\left[\dfrac{98}{99}+\dfrac{49}{100}\right]-\dfrac{49}{99}=\dfrac{14651}{19800}-\dfrac{49}{99}=\dfrac{49}{200}\)

11 tháng 10 2023

\(\dfrac{1}{1x3}+\dfrac{1}{2x4}+...+\dfrac{1}{98x100}+\dfrac{1}{97x99}-\dfrac{49}{99}=1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{100}-\dfrac{49}{99}=1-\dfrac{1}{100}-\dfrac{49}{99}\)

=\(\dfrac{4901}{9900}\)

DD
25 tháng 5 2021

b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)

\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)

\(=\frac{1}{2}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2015-2013}{2013.2015}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{2015}\right)=\frac{1007}{2015}\)

Phương trình tương đương với: 

\(\frac{1007X}{2015}=\frac{4}{2015}\Leftrightarrow X=\frac{4}{1007}\)

DD
25 tháng 5 2021

c) \(\frac{x+1}{2015}+\frac{x+2}{2016}=\frac{x+3}{2017}+\frac{x+4}{2018}\)

\(\Leftrightarrow\frac{x+1}{2015}-1+\frac{x+2}{2016}-1=\frac{x+3}{2017}-1+\frac{x+4}{2018}-1\)

\(\Leftrightarrow\frac{x-2014}{2015}+\frac{x-2014}{2016}=\frac{x-2014}{2017}+\frac{x-2014}{2018}\)

\(\Leftrightarrow x-2014=0\)

\(\Leftrightarrow x=2014\)

24 tháng 12 2016

Hỏi thật hả. 

27 tháng 2 2018

chịu vì em hok lớp 6