K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

\(A=\left(\sqrt{8}-3\sqrt{2}+10\right)\left(\sqrt{2}-3\sqrt{0.4}\right)=\sqrt{16}-\frac{12\sqrt{5}}{5}+\sqrt{20}-6\sqrt{10}-6+\frac{18\sqrt{5}}{5}\)

\(A=-2+\frac{16\sqrt{5}}{5}-6\sqrt{10}\)

b)\(B=\frac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-\frac{\sqrt{5}-1}{2}=\frac{\sqrt{6+2\sqrt{5}}}{2}-\frac{\sqrt{5}-1}{2}=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}}{2}-\frac{\sqrt{5}-1}{2}=\frac{\sqrt{5}+1}{2}-\frac{\sqrt{5}-1}{2}=1\)

15 tháng 8 2018

b) \(\frac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-\frac{\sqrt{5}-1}{2}\)

\(=\frac{\sqrt{6+2\sqrt{5}}}{2}-\frac{\sqrt{5}-1}{2}\)

\(=\frac{\left(\sqrt{5}+1\right)-\sqrt{5}+1}{2}\)

\(=1\)

P/s: câu a) với câu c) vì ko có máy tính nên lười nháp, thông cảm, em tự làm đi 

14 tháng 6 2019

a) \(-\sqrt{3}\)      b) -10             c)  60               d)  -1             e) 1

16 tháng 7 2018

\(B=\frac{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}{3+\sqrt{5}}=3-\sqrt{5}\)

\(C=\frac{1}{\sqrt{5}+\sqrt{3}}-\frac{1}{\sqrt{5}-\sqrt{3}}\)

\(=\frac{\sqrt{5}-\sqrt{3}}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}-\frac{\sqrt{5}+\sqrt{3}}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\)

\(=\frac{\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}}{2}\)

\(=\frac{-2\sqrt{3}}{2}=-\sqrt{3}\)

\(D=\frac{2}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-2}+\frac{6}{\sqrt{3}+3}\)

\(=\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\frac{\sqrt{3}+2}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+\frac{6\left(3-\sqrt{3}\right)}{\left(\sqrt{3}+3\right)\left(3-\sqrt{3}\right)}\)

\(=\sqrt{3}-1-\left(\sqrt{3}+2\right)-\left(3-\sqrt{3}\right)\)

\(=\sqrt{3}-1-\sqrt{3}-2-3+\sqrt{3}=\sqrt{3}-6\)

16 tháng 7 2018

Cảm ơn @Đường Quỳnh Gianh nhiều nhé <3 

Bài 1: Rút gọn biểu thức1) \(\sqrt{12}-\sqrt{27}+\sqrt{48}\)              2) \(\left(\sqrt{25}+\sqrt{20}-\sqrt{80}\right):\sqrt{5}\)3) \(2\sqrt{27}-\sqrt{\frac{16}{3}}-\sqrt{48}-\sqrt{8\frac{1}{3}}\)      4) \(\frac{1}{\sqrt{5}-\sqrt{3}}-\frac{1}{\sqrt{5}+\sqrt{3}}\)5) \(\left(\sqrt{125}-\sqrt{12}-2\sqrt{5}\right)\left(3\sqrt{5}-\sqrt{3}+\sqrt{27}\right)\) ...
Đọc tiếp

Bài 1: Rút gọn biểu thức

1) \(\sqrt{12}-\sqrt{27}+\sqrt{48}\)              2) \(\left(\sqrt{25}+\sqrt{20}-\sqrt{80}\right):\sqrt{5}\)

3) \(2\sqrt{27}-\sqrt{\frac{16}{3}}-\sqrt{48}-\sqrt{8\frac{1}{3}}\)      4) \(\frac{1}{\sqrt{5}-\sqrt{3}}-\frac{1}{\sqrt{5}+\sqrt{3}}\)

5) \(\left(\sqrt{125}-\sqrt{12}-2\sqrt{5}\right)\left(3\sqrt{5}-\sqrt{3}+\sqrt{27}\right)\)   6) \(\left(3\sqrt{20}-\sqrt{125}-15\sqrt{\frac{1}{5}}\right).\sqrt{5}\)

7) \(\left(6\sqrt{128}-\frac{3}{5}\sqrt{50}+7\sqrt{8}\right):3\sqrt{2}\)  8) \(\left(2\sqrt{48}-\frac{3}{2}\sqrt{\frac{4}{3}}+\sqrt{27}\right).2\sqrt{3}\)

9) \(\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{8}-4\right)^2}\)    10) \(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}\)

11) \(\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}\)      12) \(\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)

13) \(\sqrt{15-6\sqrt{6}}\)    14) \(\sqrt{8-2\sqrt{15}}\)    15) \(\sqrt[3]{-2}.\sqrt[3]{32}+\sqrt{2}.\sqrt{32}\)

 

1
26 tháng 11 2017

Giúp mình :<

a) Ta có: \(A=\sqrt{8-2\sqrt{15}}\cdot\left(\sqrt{3}+\sqrt{5}\right)-\left(\sqrt{45}-\sqrt{20}\right)\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\left(\sqrt{9}-\sqrt{4}\right)\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)

\(=\left|\sqrt{5}-\sqrt{3}\right|\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)(Vì \(\sqrt{5}>\sqrt{3}\))

\(=5-3-\sqrt{5}\)

\(=2-\sqrt{5}\)

b) Ta có: \(B=\left(\frac{\sqrt{21}-\sqrt{3}}{\sqrt{7}-1}-\frac{\sqrt{15}-\sqrt{3}}{1-\sqrt{5}}\right)\left(\frac{1}{2}\sqrt{6}-\sqrt{\frac{3}{2}}+3\sqrt{\frac{2}{3}}\right)\)

\(=\left(\frac{\sqrt{3}\left(\sqrt{7}-1\right)}{\sqrt{7}-1}+\frac{\sqrt{3}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{3}{2}}+\sqrt{6}\right)\)

\(=\sqrt{3}+\sqrt{3}+\sqrt{6}\)

\(=2\sqrt{3}+\sqrt{6}\)

c) Ta có: \(C=2\sqrt{3}+\sqrt{7-4\sqrt{3}}+\left(\sqrt{\frac{1}{3}}-\sqrt{\frac{4}{3}}+\sqrt{3}\right):\sqrt{3}\)

\(=2\sqrt{3}+\sqrt{4-2\cdot2\cdot\sqrt{3}+3}+\sqrt{\frac{1}{3}:3}-\sqrt{\frac{4}{3}:3}+\sqrt{3:3}\)

\(=2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\frac{1}{9}}-\sqrt{\frac{4}{9}}+\sqrt{1}\)

\(=2\sqrt{3}+\left|2-\sqrt{3}\right|+\frac{1}{3}-\frac{2}{3}+1\)

\(=2\sqrt{3}+2-\sqrt{3}+\frac{2}{3}\)(Vì \(2>\sqrt{3}\))

\(=\sqrt{3}+\frac{8}{3}\)

d) Ta có: \(D=\left(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\right):\frac{1}{\sqrt{7-4\sqrt{3}}}\)

\(=\left(\frac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\right)\cdot\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\)

\(=\frac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\cdot\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\frac{60}{20}\cdot\left|2-\sqrt{3}\right|\)

\(=3\cdot\left(2-\sqrt{3}\right)\)(Vì \(2>\sqrt{3}\))

\(=6-3\sqrt{3}\)

19 tháng 10 2019

a, = \(\frac{\sqrt{15}}{10}\) + \(\frac{\sqrt{15}}{30}\) - \(\frac{2\sqrt{15}}{15}\)

= \(\sqrt{15}\left(\frac{1}{10}+\frac{1}{30}-\frac{2}{15}\right)\)

= \(\sqrt{15}.0\)

= 0

b, = \(\left(\frac{\sqrt{5}+\sqrt{3}}{5-3}+\frac{\sqrt{5}-\sqrt{3}}{5-3}\right).\sqrt{5}\)

= \(\frac{\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}}{2}.\sqrt{5}\)

= \(\frac{2\sqrt{5}}{2}.\sqrt{5}\)

= \(\sqrt{5}.\sqrt{5}\)

= 5

c, = \(\frac{5\sqrt{3}}{\sqrt{15}}+\frac{3\sqrt{5}}{\sqrt{15}}\)

= \(\sqrt{5}+\sqrt{3}\)

d, Mình sửa lại đề bài cho bạn : \(\left(2+\sqrt{5}\right)^2-\left(2-\sqrt{5}\right)^2\)

= \(\left(2+\sqrt{5}-2+\sqrt{5}\right)\left(2+\sqrt{5}+2-\sqrt{5}\right)\)

= \(2\sqrt{5}.4\)

= \(8\sqrt{5}\)

e, = \(\frac{4\sqrt{3}}{3}+15\sqrt{3}-3\sqrt{3}-\frac{20\sqrt{3}}{3}\)

= \(\sqrt{3}.\left(\frac{4}{3}+15-3-\frac{20}{3}\right)\)

= \(\sqrt{3}.\frac{20}{3}\)

= \(\frac{20\sqrt{3}}{3}\)

19 tháng 10 2019

a, 320+1602115320+160−2115

b, (153+15+3).5(15−3+15+3).5

c, (53+35):15(53+35):15

d, (2+5)2(2+5)2(2+5)2−(2+5)2

e, 1348+37527101131348+375−27−10113