Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có cos60=1/2
sin 60=\(\frac{\sqrt{3}}{2}\)
tan 30=\(\frac{\sqrt{3}}{3}\)
ta thay vào biểu thức trên
=> \(\frac{\frac{1}{2}}{1+\frac{\sqrt{3}}{2}}+\frac{1}{\frac{\sqrt{3}}{3}}=2\)
\(\frac{cos60^o}{1+sin60^o}+\frac{1}{tan30^o}=\frac{\frac{1}{2}}{1+\frac{\sqrt{3}}{2}}+\frac{1}{\frac{\sqrt{3}}{3}}=\frac{1}{2}.\frac{2}{\sqrt{3}+2}+\sqrt{3}=\frac{1}{\sqrt{3}+2}+\sqrt{3}\)
\(=\frac{2-\sqrt{3}}{4-3}+\sqrt{3}=2-\sqrt{3}+\sqrt{3}=2\)
\(x=\dfrac{1}{2}\cdot\left(\dfrac{a}{\sqrt{ab}}+\dfrac{b}{\sqrt{ab}}\right)=\dfrac{a+b}{2\sqrt{ab}}\)
\(2\sqrt{x^2}-1=2\cdot\dfrac{a+b}{2\sqrt{ab}}-1=\dfrac{a+b-\sqrt{ab}}{\sqrt{ab}}\)
\(x-\sqrt{x^2-1}=\dfrac{a+b}{2\sqrt{ab}}-\sqrt{\dfrac{a^2+2ab+b^2}{4ab}-1}\)
\(=\dfrac{a+b}{2\sqrt{ab}}-\dfrac{a-b}{2\sqrt{ab}}=\dfrac{2b}{2\sqrt{ab}}=\dfrac{\sqrt{b}}{\sqrt{a}}\)
\(G=\dfrac{a+b-\sqrt{ab}}{\sqrt{ab}}:\dfrac{\sqrt{b}}{\sqrt{a}}=\dfrac{a+b-\sqrt{ab}}{\sqrt{ab}}\cdot\dfrac{\sqrt{a}}{\sqrt{b}}\)
\(=\dfrac{a+b-\sqrt{ab}}{b}\)
\(\dfrac{1}{2-\dfrac{3}{4+\dfrac{5}{6-\dfrac{7}{8+\dfrac{9}{10}}}}}=\dfrac{1}{x+\dfrac{1}{3+\dfrac{1}{5}}}+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{2}}}\\ \Leftrightarrow\dfrac{767}{1070}=\dfrac{1}{x+\dfrac{5}{16}}+\dfrac{3}{5}\\ \Leftrightarrow\dfrac{25}{214}=\dfrac{1}{x+\dfrac{5}{16}}\\ \Rightarrow x+\dfrac{5}{16}=\dfrac{214}{25}\Rightarrow x=\dfrac{3299}{400}\)
A)
Đặt \(\sqrt{1+2x}=a; \sqrt{1-2x}=b\) (\(a,b>0\) )
\(\Rightarrow \left\{\begin{matrix} a^2+b^2=2\\ a^2-b^2=4x=\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} 2a^2=2+\sqrt{3}\rightarrow 4a^2=4+2\sqrt{3}=(\sqrt{3}+1)^2\\ 2b^2=2-\sqrt{3}\rightarrow 4b^2=4-2\sqrt{3}=(\sqrt{3}-1)^2\end{matrix}\right.\)
\(\Rightarrow a=\frac{\sqrt{3}+1}{2}; b=\frac{\sqrt{3}-1}{2}\)
\(\Rightarrow ab=\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{4}=\frac{1}{2}; a-b=1\)
Có:
\(A=\frac{a^2}{1+a}+\frac{b^2}{1-b}=\frac{a^2-a^2b+b^2+ab^2}{(1+a)(1-b)}\)
\(=\frac{2-ab(a-b)}{1+(a-b)-ab}=\frac{2-\frac{1}{2}.1}{1+1-\frac{1}{2}}=1\)
B)
\(2x=\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\)
\(\Rightarrow 4x^2=\frac{a}{b}+\frac{b}{a}+2\)
\(\rightarrow 4(x^2-1)=\frac{a}{b}+\frac{b}{a}-2=\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\)
\(\Rightarrow \sqrt{4(x^2-1)}=\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\) do $a>b$
T có: \(B=\frac{b\sqrt{4(x^2-1)}}{x-\sqrt{x^2-1}}=\frac{2b\sqrt{4(x^2-1)}}{2x-\sqrt{4(x^2-1)}}=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}-\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}\)
\(=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{2\sqrt{\frac{b}{a}}}=\frac{b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{b}{a}}}=\frac{\frac{b(a-b)}{\sqrt{ab}}}{\sqrt{\frac{b}{a}}}=a-b\)
\(A=a^2+b^2+\dfrac{1}{a^2}+\dfrac{1}{b^2}\)
\(A=a^2+\dfrac{1}{16a^2}+b^2+\dfrac{1}{16b^2}+\dfrac{15}{16}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\)
\(A\ge2\sqrt{a^2\cdot\dfrac{1}{16a^2}}+2\sqrt{b^2\cdot\dfrac{1}{16b^2}}+\dfrac{15}{16}\cdot2\cdot\sqrt{\dfrac{1}{a^2b^2}}\)
\(A\ge1+\dfrac{15}{8ab}\ge1+\dfrac{15}{2\left(a+b\right)^2}\ge\dfrac{17}{2}\)
"="<=>x=y=0,5
Bài 2:
a: \(=\sqrt{\left(\dfrac{1}{5a}\right)^2}=\dfrac{1}{\left|5a\right|}=\dfrac{-1}{5a}\)
b: \(=\dfrac{1}{3}\cdot15\cdot\left|a\right|=5\left|a\right|\)