K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2019

ta có: x = 2018 => 2019 = x + 1. Do đó:

\(C=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-1.\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-1.\)

\(=x-1=2019-1=2018\)

Vậy C = 2018 với x = 2018.

Học tốt nhé ^3^

28 tháng 12 2019

\(Ta \)  \(có :\)

\(x = 2018\)\(\Leftrightarrow\)\(x + 1 = 2019\)

\(Thay \)  \(x + 1 = 2019\)\(vào \)  \(C , ta \)  \(được :\)

\(C = x\)\(15\)\(- ( x + 1 ).x\)\(14\)\(+ ( x + 1 ).x\)\(13\) \(- ( x + 1 ).x\)\(12\) \(+ ...+ ( x + 1 ).x - 1\)

\(C = x\)\(15\)\(- x\)\(15\)\(- x\)\(14\) \(+ x\)\(14\) \(+ x\)\(13\)\(- x\)\(13\)\(- x\)\(12\)\(+ ... + x^2 + x - 1\)

\(C = x - 1\)

\(Thay \)  \(x = 2018\)  \(vào \)  \(C\) \(, ta \)  \(được :\)

\(C = 2018 - 1 = 2017\)

Ta có: x=2018

nên x+1=2019

Ta có: \(A=x^5-2019x^4+2019x^3-2019x^2+2019x-2020\)

\(=x^5-x^4\left(x+1\right)+x^3\left(x+1\right)-x^2\left(x+1\right)+x\left(x+1\right)-2020\)

\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-2020\)

\(=x-2020=2019-2020=-1\)

15 tháng 5 2020

Vào Tkhđ của mik xem có ảnh ko nhé !

15 tháng 5 2020

https://m.imgur.com/a/o7Vo0kL

 CHịu khó gõ link.onl đt bèn làm ntnày thôi nha

Ảnh trên không hiện rồi nhé !

25 tháng 4 2019

Sửa đề nha :

f(x) = -x2019 + 2019x2018 - 2019x2017+...- 2019x2 + 2019x + 2019

Ta có : 2019 = 2018 + 1 = x + 1

=> f(x) = -x2019 + ( x + 1 )x2018 - ( x + 1 )x2017 + ... - ( x + 1 )x2 + ( x + 1 )x + 2019

          = -x2019 + x2019 + x2018 - x2018 - x2017 + ... - x3 - x2 + x2 + x + 2019

          = x + 2019

          = 4037

Study well ! >_<

Bạn Hồng Anh làm sai rồi Ở -2019x (dấu trừ sao bạn đổi thành cộng ??)

Kq =1 nha (-2018+2019)

Hok tốt

19 tháng 5 2018

Ta có: x = 2018 \(\Rightarrow x+1=2019\).

\(f\left(x\right)=x^6-2019x^5+2019x^4-...-2019+1\)

\(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-...-\left(x+1\right)x+1\)

\(=x^6-x^6-x^5+x^5+x^4-...-x^2-x+1\)

\(=-x-1=-2018-1=-2019\)