K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 11 2019

\(A=\frac{2cos^2a-\left(sin^2a+cos^2a\right)}{sina+cosa}=\frac{cos^2a-sin^2a}{sina+cosa}=\frac{\left(cosa-sina\right)\left(cosa+sina\right)}{sina+cosa}=cosa-sina\)

\(P=tan1.tan89.tan2.tan88...tan44.tan46.tan45\)

\(=tan1.cot1.tan2.cot2...tan44.cot44.tan45\) (công thức \(tanx=cot\left(90^0-x\right)\))

\(=1.1.1....1=1\)

NV
13 tháng 11 2019

\(2cos^2x-cos^2x-sin^2x=cos^2x-sin^2x\) , phép trừ của lớp 1 là \(2-1=1\) thôi mà bạn?

Còn \(tan45^0=1\) là 1 gía trị lượng giác cơ bản ai cũng nên biết chứ nhỉ? Ít nhất giá trị của các góc đặc biệt như 30 ; 45; 60; 90 cũng nên thuộc :(

4 tháng 9 2018

câu 1 : ta có : \(A=\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-\left(sin^8x+cos^8x\right)\)

\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-3sin^2x.cos^2x\right)\)

\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-sin^2x.cos^2x\right)+2sin^2xcos^2x\)

\(=-sin^2x.cos^2x\left(1-sin^2x.cos^2x\right)+2sin^2x.cos^2x\)

\(=sin^2x.cos^2x\left(1+sin^2x.cos^2x\right)\)

tới đây mk xin sử dụng kiến thức lớp 10 một chút

\(=\dfrac{sin^22x}{4}\left(1+\dfrac{sin^22x}{4}\right)=\dfrac{sin^22x}{4}+\dfrac{sin^42x}{16}\)

vẩn phụ thuộc vào x \(\Rightarrow\) đề sai .

4 tháng 9 2018

câu 1 : câu này bn có thể tìm trong trang của mk , mk nhớ đã làm nó rồi nhưng tìm hoài không đc . nếu đc bn có thể chờ mk đi hok về mk sẽ kiếm cho bn hoắc có thể là lm lại cho bn nha :)

câu 2 : https://hoc24.vn/hoi-dap/question/657072.html

câu 3 : https://hoc24.vn/hoi-dap/question/657069.html

câu 4 : https://hoc24.vn/hoi-dap/question/656635.html

câu 5 : https://hoc24.vn/hoi-dap/question/657071.html

27 tháng 9 2018

a) 1 + tan22 a =1 +(\(\dfrac{sina}{cosa}\))2 =\(\dfrac{sina+cosa}{cos^2a}\)=\(\dfrac{1}{cos^2a}\)

b) 1 + cot2 a= 1 +(\(\dfrac{cosa}{sina}\))2 = \(\dfrac{cosa+sina}{sin^2a}\)=\(\dfrac{1}{sin^2a}\)

c) tan2 a (2 sin2a + 3 cos2 a - 2)

=tan2 a[cos2 a +2 (\(sina^2+cos^2a\))-2 ]

=\(\dfrac{sin^2a}{cos^2a}\)×\(cos^2a=sin^2a\)

b: \(1+cot^2a=1+\left(\dfrac{cosa}{sina}\right)^2=\dfrac{1}{sin^2a}\)

c: \(=tan^2a\left[2\left(1-cos^2a\right)+3cos^2a-2\right]\)

\(=tan^2a\left[cos^2a\right]\)

\(=\dfrac{sin^2a}{cos^2a}\cdot cos^2a=sin^2a\)

12 tháng 10 2018

+) ta có : \(A=\left(tan\alpha+cot\alpha\right)^2-\left(tan\alpha-cot\alpha\right)^2\)

\(=tan^2\alpha+cot^2\alpha+2-tan^2\alpha-cot^2\alpha+2=4\) (không phụ thuộc vào \(\alpha\)) \(\Rightarrow\) (đpcm)

+) ta có : \(B=sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)

\(=\left(sin^2\alpha\right)^3+\left(cos^2\alpha\right)^3+3sin^2\alpha.cos^2\alpha\)

\(=\left(sin^2\alpha+cos^2\alpha\right)\left(sin^4\alpha+cos^4\alpha-sin^2\alpha.cos^2\alpha\right)+3sin^2\alpha.cos^2\alpha\)

\(=\left(\left(sin^2\alpha+cos^2\alpha\right)^2-3sin^2\alpha.cos^2\alpha\right)+3sin^2\alpha.cos^2\alpha\)

\(=1\) (không phụ thuộc vào \(\alpha\) ) \(\Rightarrow\) (đpcm)

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán

NV
14 tháng 8 2020

a/ \(cos^2a=1-sin^2a=\frac{5}{9}\)

\(P=\frac{sin^2a}{cos^2a}-\frac{2cos^2a}{sin^2a}=\frac{\frac{4}{9}}{\frac{5}{9}}-\frac{\frac{10}{9}}{\frac{4}{9}}=-\frac{17}{10}\)

b/ \(M=\frac{1}{\frac{sina}{cosa}+\frac{cosa}{sina}}=\frac{1}{\frac{sin^2a+cos^2a}{sina.cosa}}=sina.cosa=\frac{2\sqrt{2}}{9}\)