Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,A=|x-7|+12
Vì \(\left|x-7\right|\ge0\forall x\)nên \(\left|x-7\right|+12\ge12\forall x\)
Ta thấy A=12 khi |x-7| = 0 => x-7 = 0 => x = 7
Vậy GTNN của A là 12 khi x = 7
b,B=|x+12|+|y-1|+4
Vì \(\left|x+12\right|\ge0\forall x\)
\(\left|y-1\right|\ge0\forall y\)
nên \(\left|x+12\right|+\left|y-1\right|\ge0\forall x,y\)
\(\Rightarrow\left|x+12\right|+\left|y-1\right|+4\ge4\forall x,y\)
Ta thấy B = 4 khi \(\hept{\begin{cases}\left|x+12\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+12=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=1\end{cases}}\)
Vậy GTNN của B là 4 khi x = -12 và y = 1
a; - \(\dfrac{10}{13}\) + \(\dfrac{5}{17}\) - \(\dfrac{3}{13}\) + \(\dfrac{12}{17}\) - \(\dfrac{11}{20}\)
= - (\(\dfrac{10}{13}\) + \(\dfrac{3}{13}\)) + (\(\dfrac{5}{17}\) + \(\dfrac{12}{17}\)) - \(\dfrac{11}{20}\)
= - 1 + 1 - \(\dfrac{11}{20}\)
= 0 - \(\dfrac{11}{20}\)
= - \(\dfrac{11}{20}\)
b; \(\dfrac{3}{4}\) + \(\dfrac{-5}{6}\) - \(\dfrac{11}{-12}\)
= \(\dfrac{9}{12}\) - \(\dfrac{10}{12}\) + \(\dfrac{11}{12}\)
= \(\dfrac{10}{12}\)
= \(\dfrac{5}{6}\)
c; [13.\(\dfrac{4}{9}\) + 2.\(\dfrac{1}{9}\)] - 3.\(\dfrac{4}{9}\)
= [\(\dfrac{52}{9}\) + \(\dfrac{2}{9}\)] - \(\dfrac{4}{3}\)
= \(\dfrac{54}{9}\) - \(\dfrac{4}{3}\)
= \(\dfrac{14}{3}\)