Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(1,41 < \sqrt 2 < 1,42\) hay \(1,415 - 0,005 < \sqrt 2 < 1,415 + 0,005\)
\( \Rightarrow \) Số gần đúng của \(\sqrt 2 \) là 1,415 với độ chính xác 0,005
Khi đó: Độ dài đường chéo của hình vuông cạnh 10 cm là: \(10.1,415 = 14,15\;(cm)\)
Độ dài đúng là \(10\sqrt 2 \)cm, thỏa mãn: \(10.1,41 < 10\sqrt 2 < 10.1,42\) hay \(14,1 < 10\sqrt 2 < 14,2\)
Do đó \(14,1 - 14,15 < 10\sqrt 2 - 14,15 < 14,2 - 14,15\), tức là \(\left| {10\sqrt 2 - 14,15} \right| < 0,05.\)
Vậy kết quả 14,15 cm có độ chính xác là 0,05.
Đường chéo của hình vuông có cạnh bằng 3 cm là 3√2 cm.
Ta có: a-- = 3√2, a = 3.1,41
√Δa =|a-- - a|= 0,0126 ≤ 0,0127
Vậy độ chính xác là d = 0,0127
a) Số kết quả xảy ra khi chọn ngẫu nhiên 3 sản phẩm là: \(C_{20}^3\) ( kết quả )
b) Chọn ngẫu nhiên 3 sản phẩm từ 20 sản phẩm ta được một tổ hợp chập 3 của 20. Do đó, số phần tử của không gian mẫu là: \(n\left( \Omega \right) = C_{20}^3\)( phần tử)
Gọi A là biến cố “Cả 3 sản phẩm được chọn là chính phẩm”
Để chọn được cả 3 sản phẩm đều là chính phẩm thì ta phải chọn 3 sản phẩm từ 16 chính phẩm tức là ta được một tổ hợp chập 3 của 16 phần tử. Do đó số phần tử của biến cố A là: \(n\left( A \right) = C_{16}^3\)( phần tử)
Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_{16}^3}}{{C_{20}^3}} = \frac{{28}}{{57}}\).
Gọi \(AH\) là hình chiếu của \(A\) trên \(d\)
\(\Rightarrow AH:-2x+4y+c'=0\)
AH đi qua \(A\left(1;1\right)\Rightarrow-2.1+4.1+c'=0\)
\(\Rightarrow c'=-2\)
\(\Rightarrow\) phương trình \(AH\) là : \(-2x+4y-2=0\Rightarrow-x+2y-1=0\)
Tọa độ H là nghiệm của hệ phương trình :
\(\left\{{}\begin{matrix}-x+2y-1=0\\4x+2y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{5}\\y=\dfrac{3}{10}\end{matrix}\right.\)
\(\Rightarrow H\left(-\dfrac{2}{5};\dfrac{3}{10}\right)\)
Gọi \(\left(d'\right)\) là đường thẳng qua A và vuông góc với (d). Do (d) có VTPT \(\overrightarrow{n_d}=\left(4;2\right)\)
\(\Rightarrow\) \(\left(d'\right)\) có VTPT \(\overrightarrow{n_{d'}}=\left(2;-4\right)\) hay \(\left(d'\right):2x-4y+m=0\) \(\left(m\inℝ\right)\)
Mà \(A\left(1;1\right)\in\left(d'\right)\) nên \(2-4+m=0\Leftrightarrow m=2\). Vậy đường thẳng qua A và vuông góc với \(d\) có pt là \(2x-4y+2=0\) hay \(x-2y+1=0\)
Do đó hình chiếu vuông góc H của A lên d chính là giao điểm của d' và d. Nếu \(H\) có tọa độ \(\left(x_H;y_H\right)\) thì \(x_H;y_H\) thỏa mãn hệ phương trình \(\left\{{}\begin{matrix}x_H-2y_H+1=0\\4x_H+2y_H+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_H=-\dfrac{2}{5}\\y_H=\dfrac{3}{10}\end{matrix}\right.\)\(\Rightarrow H\left(-\dfrac{2}{5};\dfrac{3}{10}\right)\).
Vậy hình chiếu của A lên d có tọa độ \(\left(-\dfrac{2}{5};\dfrac{3}{10}\right)\)