Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=\frac{2x}{x^2+1}+\frac{2x-1}{\left(x^2-x+1\right)\ln2}\)
\(y=\log\left(\frac{1-\sqrt{x}}{2\sqrt{x}}\right)\Rightarrow y'=\frac{\left(\frac{1-\sqrt{x}}{2\sqrt{x}}\right)'}{\frac{1-\sqrt{x}}{x^2}\ln10}=\frac{-\frac{1}{2\sqrt{x}}.2\sqrt{x}-\frac{1}{\sqrt{x}}.\left(1-\sqrt{x}\right)}{\frac{1-\sqrt{x}}{2\sqrt{x}}\ln10}\)
\(=\frac{-1-\frac{1-\sqrt{x}}{\sqrt{x}}}{4x.\frac{1-\sqrt{x}}{2\sqrt{x}}\ln10}=\frac{1}{2x\left(\sqrt{x}-1\right)\ln10}\)
\(y'=\frac{e^x}{2\sqrt{e^x}}+3.e^{3x-1}-\left(-\sin x+\cos x\right)5^{\sin x+\cos x}\ln5\)
\(=\frac{\sqrt{e^x}}{2}+3e^{3x-1}+\left(\sin x+\cos x\right).5^{\sin x+\cos x}\ln5\)
\(L=\lim\limits_{x\rightarrow0}\frac{\ln\left(1+x^3\right)}{2x}=\lim\limits_{x\rightarrow0}\frac{\ln\left(1+x^3\right)}{x^3.\frac{2}{x^2}}=\lim\limits_{x\rightarrow0}\left[\frac{\ln\left(1+x^3\right)}{x^3}.\frac{x^3}{2}\right]=1.0=0\)
\(L=\lim\limits_{x\rightarrow0}\frac{\ln x-1}{\tan x}=\lim\limits_{x\rightarrow0}\frac{\ln\left(1+2x\right)}{\frac{\sin x}{\cos x}}=\lim\limits_{x\rightarrow0}\frac{\ln\left(1+2x\right)}{2x.\frac{\sin x}{x}.\frac{1}{2\cos x}}\)
\(=\lim\limits_{x\rightarrow0}\left[\frac{\ln\left(1+2x\right)}{2x}.\frac{1}{\frac{\sin x}{x}}.2\cos x\right]=1.\frac{1}{1}.2.1=2\)
\(y=\log_2\left(\frac{x-4}{x+4}\right)\Rightarrow y'=\frac{\frac{8}{\left(x+4\right)^2}}{\left(\frac{x-4}{x+4}\right)\ln2}=\frac{8}{\left(x^2-16\right)\ln2}\)
xét hàm số y=ln(\(x+\sqrt{1+x^2}\))
Ta có
y'=\(\frac{1}{x+\sqrt{1+x^2}}\left(1+\frac{x}{\sqrt{1+x^2}}\right)=\frac{1}{x+\sqrt{1+x^2}}.\frac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}}=\frac{1}{\sqrt{1+x^2}}\)
Đặt \(t=x-e\Rightarrow\begin{cases}x=t+e\\x\rightarrow e;t\rightarrow0\end{cases}\)
\(\Rightarrow L=\lim\limits_{t\rightarrow0}\frac{\ln\left(t+e\right)-\ln e}{t}=\lim\limits_{t\rightarrow0}\frac{\ln\left(\frac{t+e}{e}\right)}{t}=\lim\limits_{t\rightarrow0}\left[\frac{\ln\left(1+\frac{t}{e}\right)}{\frac{t}{e}}\right]=\frac{1}{e}\)
\(\Rightarrow y'=\frac{2\left(\ln x\right)\frac{1}{x}}{3\sqrt[3]{\ln^4x}}=\frac{2}{3x\sqrt[3]{\ln x}}\)