Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a) }\left(x-1\right)^2+\left|y+3\right|=0\)
Vì \(\left(x-1\right)^2\text{ và }\left|y+3\right|\text{ đều }\ge0\)
nên để \( \left(x-1\right)^2+\left|y+3\right|=0\)
thì \(\left(x-1\right)^2=0\text{ và }\left|y+3\right|=0\)
\(\Rightarrow x-1=0\text{ và }y+3=0\)
\(\Rightarrow x=1\text{ và }y=-3\)
\(\text{b) }\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)
\(\text{vì }\left(x^2-9\right)^2\text{ và }\left|2-6y\right|^5\text{ đều }\ge0\)
Nên để \(\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)
Thì \(\left(x^2-9\right)^2+\left|2-6y\right|^5=0\)
hay \(\left(x^2-9\right)^2=0\text{ và }\left|2-6y\right|^5=0\)
\(\Rightarrow x^2-9=0\text{ và }2-6y=0\)
\(\Rightarrow x^2=9\text{ và }6y=2\)
\(\Rightarrow x=\pm3\text{ và }y=\frac{1}{3}\)
Câu c) làm tương tự nha
a)\(2019-\left|x-2019\right|=x\)
\(\Rightarrow2019-x=\left|x-2019\right|\)
=>\(\left|x-2019\right|=-\left(x-2019\right)\)
=>\(x-2019\le0\)
=>\(x\le2019\)
b) Vì \(\left(2x-1\right)^{2018}\ge0\forall x\)
\(\left(y-\frac{2}{5}\right)^{2018}\ge0\forall y\)
\(\left|x+y-z\right|\ge0\forall x,y,z\)
=> \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|\ge0\forall x,y,z\)
mà \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}}\)=>\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}\)
a, Ta có:
\(\left|x-2019\right|=\orbr{\begin{cases}x-2019\ge0\Rightarrow x\ge2019\\-x+2019< 0\Rightarrow x< 2019\end{cases}}\)
Xét x<2019 thì |x-2019|=-x+2019
Khi đó: 2019-(-x+2019)=x
\(\Leftrightarrow\)-x+2019=2019-x
\(\Leftrightarrow\)-x+2019+x=2019
\(\Leftrightarrow\)0x+2019=2019
\(\Leftrightarrow\)0x=0 (thỏa mãn)
Xét 2019\(\le\)x thì |x-2019|=x-2019
Khi đó 2019-(x-2019)=x
\(\Leftrightarrow\)2019-x+2019=x
\(\Leftrightarrow\)4038-x=x
\(\Leftrightarrow\)4038=2x
\(\Leftrightarrow\)x=2019(thỏa mãn)
Vậy .......................................................!!!
\(\hept{\begin{cases}\left(x+1\right)^{2018}\ge0\\\left|y-1\right|\ge0\end{cases}}\Rightarrow\left(x+1\right)^{2018}+\left|y-1\right|\ge0\)
dấu = xảy ra khi \(\hept{\begin{cases}\left(x+1\right)^{2018}=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)
\(P=x^{2019}.y^{2018}=\left(-1\right)^{2019}.1^{2018}=-1.1=-1\)
\(\text{Ta có:}\left(x+2019\right)^{2018}\ge0với\forall x\)
\(|y-2020|\ge0với\forall y\)
\(\Rightarrow\)\(\left(x+2019\right)^{2018}+\)\(|y-2020|\ge0với\forall x,y\)
\(\text{Mà }\)\(\left(x+2019\right)^{2018}+\)\(|y-2020|=0\)\(\text{(Theo đề bài)}\)
\(\Rightarrow\hept{\begin{cases}\left(x+2019\right)^{2018}=0\\|y-2020|=0\end{cases}\Rightarrow\hept{\begin{cases}x+2019=0\\y-2020=0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=-2019\\y=2020\end{cases}}\)
\(\Rightarrow M=x+y=-2019+2020=1\)