Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kẻ AE vuông góc vs DC, BF vuông góc vsDC
xét tg AED và tg BFC cò
AED =BFC=90
AD=BC ,ADE= BCF (vì tg ABCD là hthang cân)
=> tg AED =tg BFC (ch-gn)
=>DE=CF (1)
xét tg ABFE có: 3 góc vuông (tự c/m) =>tg ABFE là hcn =>AB=EF=10 cm,
ta có :DE +EF +FC =DC=24
mà EF=10cm,DE =CF => 2DE =24-10=14 =>DE=7cm
xét tg ADE vuông tại D có: AE^2 +DE^2 =AD^2
=>AE^2 +7^2 =25^2 =>AE=24cm
vậy chiều cao của hthang ABCD là 24cm
Từ A,B kẻ đường cao AH,BK (H∈CD, K∈CD)
AB//HK=>ABKH là hình bình hành.
AH⊥DC=>ABKH là hình chữ nhật
=>HK=AB=10
ΔAHD= ΔBKC(ch-gn)
=>DH=HC=(DC-HK)//2=7
ΔKCB vuông tại K =>BC^2=BK^2+KC^2
=>BK=24
Gọi giao điểm của CD và chiều cao của nó là E.
\(DE=\frac{24-10}{2}=7\)
Áp dụng định lý Py- ta-go vào tam giác ADE, ta được
\(AD=\sqrt{25^2-7^2}=\sqrt{576}=24\)
Vậy chiều cao của hình thang ABCD là 24cm
Câu 1:
Gọi mỗi đinh của tứ giác là A, B, C, D. Các góc ngoài tương ứng lần lượt là A1, B1, C1, D1
Ta có: A+ B+ C+ D+ A1+ B1+ C1+ D1= 720 độ
Ma A+ B+ C+ D= 360 độ nên A1+ B1+ C1+ D1= 720 - 360= 360 độ
A B D H K C
Từ B kẻ BK vuông góc với CD cắt CD tại K
Ta có AB//CD
Mà H, K \(\in\) CD
Suy ra: AB//HK
Tứ giác ABKH có AB//HK
Suy ra: ABKH là hình thang
Ta có: AH \(\perp\) CD
BK \(\perp\)CD
Suy ra AH//BK
Hình thang ABKH có 2 cạnh bên AH//BK
=> AH=BK, AB=HK=10cm
Do ABCD là hình thang cân nên 2 cạnh bên AD=BC=25cm.
Xét 2 tam giác vuông AHD và BKC có:
AH=BK (cmt)
AD=BC (gt)
\(\Rightarrow\Delta AHD=\Delta BKC\left(ch-cgv\right)\)
\(\Rightarrow DH=CK\) (2 cạnh tương ứng)
Ta có: DH+HK+CK=DC
=> DH+10+CK=24
=>DH+CK=24-10
=>DH+CK=14cm
=> DH=CK=14:2
=>DH=CK=7 (cm)
Áp dụng định lý Py-ta-go vào \(\Delta AHD\) ta có:
\(AD^2=AH^2+DH^2\)
\(\Rightarrow AH^2=25^2-7^2\)
\(\Rightarrow AH^2=625-49\)
\(\Rightarrow AH^2=576\)
\(\Rightarrow AH=24\)cm
Vậy độ dài đường cao của hình thang cân ABCD là 24cm.