Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ 1 đến 999 có : (999-1) :2 +1=500 ( số)
Vậy 1+3+5+...+999 = ( 999+1) x 500:2 = 250000
Từ 2 đến 100 có : ( 100-2) :2 +1= 50 ( số)
Vậy 2+4+6+....+ 100+ 2+4+6+100= ( 100+2)x50:2 x2= 5100
Từ 1 đến 99 có : ( 99-1) :2 +1 = 50 ( số)
Vậy 1+3+5+...+ 99 = (99+1) x50 :2 = 2500
Vậy 1+3+5+...+999+2+4+6+...+100+1+3+5+...+99+2+4+6+...+100 = 250000+5100+2500=257600
Đáp số : 257600
a) \(\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{97.99}\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+\frac{3}{2}.\left(\frac{1}{7}-\frac{1}{9}\right)+...+\frac{3}{2}.\left(\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=\frac{3}{2}.\frac{32}{99}\)
\(=\frac{16}{33}\)
b)
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\)
\(=1-\frac{1}{103}\)
\(=\frac{102}{103}\)
= (1+3+5+7+9)+(2+4+6+8+10)+(1+3+5+7+9+...+99)+(2+4+6+8+...+100)+(1+3+5+7+9+...+999)+(2+4+6+8+...+1000)
Gọi tên các dãy theo thứ tự sắp xếp là: A;B;C;D;E;F
Số các số hạng của dãy số A là: (9-1):1+1=5 số hạng
Tổng của dãy số A là: (1+9)x5:2= 25
Số các số hạng của dãy số B là: (10-2):2+1=5 số hạng
Tổng của dãy số B là: (2+10)x5:2=30
Số các số hạng của dãy số C là: (99-1):2+1=45 số hạng
Tổng của dãy số C là: (1+99)x45:2=2250
Số các số hạng của dãy số D là: (100-2):2+1=45 số hạng
Tổng của dãy số D là: (2+100)x45:2=2295
Số các số hạng của dãy số E là: (999-1):2+1=500 số hạng
Tổng của dãy số E là: (1+999)x500:2=250000
Số các số hạng của dãy số F là: (1000-2):2+1=500 số hạng
Tổng của dãy số F là: (2+1000)x500:2=250500
Tổng trên là: 25+30+2250+2295+250000+250500=505100
Đ/S: 505100
\(C=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{101.102}\)
\(\Rightarrow C=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{102}\)
\(\Rightarrow C=\frac{1}{3}-\frac{1}{102}\)
\(\Rightarrow C=\frac{34}{102}-\frac{1}{102}=\frac{33}{102}=\frac{11}{34}\)
\(C=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+..+\frac{1}{101}-\frac{1}{102}\)
\(C=\frac{1}{3}-\frac{1}{102}\)
\(C=\frac{11}{34}\)
a.1+3+5+7+9+11+13+15+17+19
muốn tính tổng của dãy ta lấy tổng số đầu và cuối nhân số các số hạng rồi chia 2.
tổng của dãy:(19+1)x10:2=100
1 + 2 + ... + 99 + 100
= (1 + 99) + (2 + 98) + ... + 100
= 100 + 100 + ... + 100 (50 số 100)
= 50 x 100
= 5000
Các câu khác tương tự
1 + 2 + 3 + ... + 100
= (1 + 100).100 : 2
= 101.100 : 2
= 101.50
= 5050
1 + 3 + 5 + ... + 2017
số số hạng là :
(2017 - 1) : 2 + 1 = 1009
tổng :
(2017 + 1).1009 : 2 = 1018081
2 + 4 + 6 + ... + 2018
số số hạng :
(2018 - 2) : 2 + 1 = 1009
tổng :
(2018 + 2).1009 : 2 = 1009000
1/2*3+1/3*4+1/4*5 + 1/5*6 + .... + 1/99 * 100
= 1/2 -1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 +..... + 1/99 - 1/100
= 1/2 - 1/100
= 49/100 nha bạn !
1/2x3+1/3x4+1/4x5+1/5x6+....+1/99x100
=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+....+1/99-1/100
=1/2-1/100=49/100
A=1+5+9+13+...+1997+2001
A=(1+2001)x501:2
A=2002x501:2
A=501501
B=2+5+8+...+2003+2006
B=(2+2006)x669:2
B=2008x669:2
B=671676
C=367+361+355+...+7+1
C=(367+1)x62:2
C=368x62:2
C=11408
a) \(5+9+13+...+1997+2001\)
Đây là tổng các số hạng cách đều, số hạng sau hơn số hạng trước \(4\)đơn vị.
Tổng trên có số số hạng là: \(\left(2001-5\right)\div4+1=500\)(số hạng)
Giá trị của tổng trên là:
\(\left(2001+5\right)\times500\div2=5001500\)
b) \(A=1\times2+2\times3+3\times4+...+99\times100\)
\(3\times A=1\times2\times3+2\times3\times\left(4-1\right)+3\times4\times\left(5-2\right)+...+99\times100\times\left(101-98\right)\)
\(=1\times2\times3+2\times3\times4-1\times2\times3+3\times4\times5-2\times3\times4+...+99\times100\times101-98\times99\times100\)
\(=99\times100\times101\)
\(\Leftrightarrow A=\frac{99\times100\times101}{3}=333300\)