Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,Tính các tổng sau. a) 1 + 2+ 3+ 4 +....+ n
b) 2+4+6+8+...+2.n
c) 1+3+5+7+...+(2.n +1)
d) 1+4+7+10+..+2005
e) 2+5+8+...+2006
f) 1+5+9+..+2001
2,Tính nhanh : A = 1 +2 + 4 + 8 +16 + ...+ 8192 3,
a, Tính tổng các số lẻ có 2 chữ số.
b,Tính tổng các số chẵn có 2 chữ số.
4,a,Tổng 1 +2+3+....+n có bao nhiêu số hạng để kết quả tổng bằng 190
b,Có hay không số tự nhiên n sao cho 1+2+3+...+n =2004
c,Chứng minh rằng: [(1+2+3+...+n)-7]không chia hết cho 10
Cái tên.. àk mà thôi -_-
\(a)\) \(1+2+3+4+...+n=\frac{n\left(n+1\right)}{2}\)
\(b)\) \(2+4+6+8+...+2n=\left(\frac{2n-2}{2}+1\right)\left(2n+2\right)=\frac{2n\left(2n+2\right)}{2}=2n\left(n+1\right)\)
\(c)\) \(1+3+5+...+\left(2n+1\right)=\left(\frac{2n+1-1}{2}+1\right)\left(2n+1+1\right)=\frac{\left(2n+2\right)\left(2n+2\right)}{2}=\frac{\left(2n+2\right)^2}{2}\)
\(d)\) \(1+4+7+10+...+2005=\left(\frac{2005-1}{3}+1\right)\left(2005+1\right)=1342014\)
\(e)\) \(2+5+...+2006=\left(\frac{2006-2}{3}+1\right)\left(2006+2\right)=1343352\)
\(g)\) \(1+5+9+...+2001=\left(\frac{2001-1}{4}+1\right)\left(2001+1\right)=1003002\)
Chúc bạn học tốt ~
I.
Ta có:
1 + 2 = 3 (Số liền trước 4)
1 + 2 + 4 = 7 (Số liền trước 8)
1 + 2 + 4 + 8 = 15 (Số liền trước 16)
<=> 1 + 2 + 4 + 8 + 16 + ... + 4096 sẽ bằng số liền trước 8192 => Số liền trước 8192 là 8191:
=> 8191 + 8192 = 16383
II.
a)
Áp dụng theo công thức:
Số số hạng:
\(\left(n-1\right):1+1=n\) (số hạng)
Tổng:
\(\left(n+1\right)\frac{n}{2}\)
b)
Số số hạng:
\(\frac{2n-2}{2}+1=\frac{2\left(n-1\right)}{2}+1=n\)
Tổng:
\(\frac{\left(2n+2\right)n}{2}=\left(n+1\right)n\)
c)
Số số hạng:
\(\left(2005-1\right):3+1=669\) (số hạng)
Tổng:
\(\left(2005+1\right).669:2=671007\)
a) 1+2+3+4+5+...+n = n(n+1) / 2
b)2+4+6+...+2n = [(2n-2):2+1] . (2n+2)/2 = n . ( 2n+2) /2
a)1+2+3+...+n
=[(n-1):1+1].(n+1):2
=n.( n+1)/2
b) {[(2n-1)-1]:2+1}. [(2n-1)+1]:2
=n.n=n2
a) 1+2+3+...+n
= [(n-1):1+1].(n+1):2
= n.( n+1)/2
b) {[(2n-1)-1]:2+1}. [(2n-1)+1]:2
= n.n = n2
a) =\(\frac{n\left(n+1\right)}{2}\)
b) =\(n\left(n+1\right)\)
c) =\(\left(n+1\right)^2\)
d) =\(\left(2008+1\right).\left(\frac{2008-1}{3}+1\right):2=673015\)
a) 1 + 2 + 3 + ... + n
= \(\frac{\left(n+1\right).n}{2}\)
b) 1 + 3 + 5 + 7 + ... + (2n + 1)
= \(\left(2n+1+1\right).\left(\frac{2n+1-1}{2}+1\right):2\)
\(=\left(2n+2\right).\left(\frac{2n}{2}+1\right):2\)
\(=2.\left(n+1\right).\left(n+1\right):2\)
\(=\left(n+1\right)^2\)
c) 2 + 4 + 6 + 8 + ... + 2.n
= 2.(1 + 2 + 3 + 4 + ... + n)
\(=2.\frac{\left(n+1\right).n}{2}\)
= (n + 1).n