Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(5xy.\left(-2bx^2y\right)\)
\(=\left[5.\left(-2\right)\right]\left(x.x^2\right)\left(y.y\right).b\)
\(=-10x^3y^2b\)
b) \(\left(-\frac{4}{5}ab^2c\right)\left(-20a^4bx\right)\)
\(=\left[\left(-\frac{4}{5}\right)\left(-20\right)\right]\left(a.a^{4\:}\right)\left(b^2b\right).c.x\)
\(=16a^5b^3cx\)
c) \(2^3abc.\frac{1}{4}a^2bc^3\)
\(=\left(2^3.\frac{1}{4}\right)\left(aa^{2\:}\right)\left(bb\right)\left(cc^3\right)\)
\(=2a^3b^2c^4\)
d) \(a^3b^3a^2b^2c\)
\(=\left(a^3a^2\right)\left(b^3b^2\right)c\)
\(=a^5b^5c\)
e) \(2ab.\frac{4}{3}a^2b^47abc\)
\(=\left(2.\frac{4}{3}.7\right)\left(aa^{2\: }a\right)\left(bb^4b\right)c\)
\(=\frac{56}{3}a^4b^6c\)
f) \(\left(-1,5ab^2\right)\frac{1}{4}bca^2b\)
\(=\left(-1,5.\frac{1}{4}\right)\left(aa^{2\:}\right)\left(b^2bb\right)\)
\(=-\frac{3}{8}a^3b^4\)
Ta có
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\frac{2a+2b+2c}{a+b+c}\)
\(=2\)
Từ \(\frac{2b+c-a}{a}=2\Rightarrow2a=2b+c-a\Rightarrow3a-2b=c\)và \(3a-c=2b\)
Tương tự có \(3b-2c=a;3b-a=2c\) và \(3c-2a=b;3c-b=2a\)
Thay vào biểu thức M ta có
\(M=\frac{a\cdot b\cdot c}{2\cdot b\cdot2\cdot a\cdot2\cdot c}=\frac{1}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{\left(2b+c-a\right)+\left(2c-b+a\right)+\left(2a+b-c\right)}{a+b+c}\)\(=\frac{2a+2c+2a}{a+b+c}=2\)
vậy : \(\frac{2b+c-a}{a}=2\Rightarrow2b+c-a=2a\Rightarrow2b+c-3a=0\Rightarrow3a-2c=c\Rightarrow3a-c=2b\)
\(\frac{2c-b+a}{b}=2\Rightarrow2c-b+a=2b\Rightarrow2c+a-3b=0\Rightarrow3b-2c=a\Rightarrow3b-a=2c\)
\(\frac{2a+b-c}{c}=2\Rightarrow2a+b-c=2c\Rightarrow2a+b-3c=0\Rightarrow3c-2a=b\Rightarrow3c-b=2a\)
Vậy \(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}=\frac{c.a.b}{2b.2c.2a}=\frac{1}{8}\)
Câu hỏi của Hà My Trần - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo câu hỏi ở link này.
Ta có : \(\frac{3a+b+2a}{2a+c}=\frac{a+3b+c}{2b}=\frac{a+2b+2c}{b+c}\)
\(\Rightarrow\frac{a+b+c+2a+c}{2a+c}=\frac{a+b+c+2b}{2b}=\frac{a+b+c+b+c}{b+c}\)
\(\Rightarrow\frac{a+b+c}{2a+c}+1=\frac{a+b+c}{2b}+1=\frac{a+b+c}{b+c}+1\)
\(\Rightarrow\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)
\(\Rightarrow2a+c=2b=b+c\)
\(\Rightarrow\hept{\begin{cases}c=b\\a=\frac{1}{2}b\end{cases}}\)
Thay vào biểu thức trên , ta được :
\(P=\frac{\left(\frac{1}{2}b+b\right)\left(b+b\right)\left(b+\frac{1}{2}b\right)}{\frac{1}{2}b.b.b}\)
Vậy \(P=9\)
Trừ cả 3 đi 1 ta còn
\(\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)
Vói a+b+c=1 thì P=-1
Với a+b+c khác 0 thì
\(\Rightarrow2a+c=2b=b+c\Rightarrow2a=b=c\)
\(\Rightarrow P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\frac{3}{2}b2c3a}{abc}=9\)
Vậy............
a) \(5xy\cdot\left(-2bx^2y\right)=-10b\left(x\cdot x^2\right)\left(y\cdot y\right)=-10bx^3y^2\)
b) \(\left(-\frac{4}{5}ab^2c\right)\left(-20a^4bx\right)=\left[\left(-\frac{4}{5}\right)\cdot\left(-20\right)\right]\left(a\cdot a^4\right)\left(b^2\cdot b\right)cx\)
\(=16a^5b^3cx\)
c) \(2^3abc\cdot\frac{1}{4}a^2bc^3=8abc\cdot\frac{1}{4}a^2bc^3=2\left(a\cdot a^2\right)\left(b\cdot b\right)\left(c\cdot c^3\right)=2a^3b^2c^4\)
d) \(a^3b^3a^2b^2c=\left(a^3\cdot a^2\right)\left(b^3\cdot b^2\right)c=a^5b^5c\)
e) \(2ab\cdot\frac{4}{3}a^2b^4\cdot7abc=\left(2\cdot\frac{4}{3}\cdot7\right)\left(a\cdot a^2\cdot a\right)\left(b\cdot b^4\cdot b\right)c=\frac{56}{3}a^4b^6c\)
f) \(\left(-1,5ab^2\right)\cdot\frac{1}{4}bca^2b=\left(-1,5\cdot\frac{1}{4}\right)\left(a\cdot a^2\right)\left(b^2\cdot b\cdot b\right)c=-\frac{3}{8}a^3b^4c\)