Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3A=2B ; 4B=3C
=> A/2=B/3; B/3=C/4
Mẫu số chung của B là 9
=> A/2.3=B/3.3; B/3.3=C/4.3
=> A/6=B/9=C/12
=> Ta có: A/6=B/9=C12 = A+B+C =180 độ
= 6+9+12 = 27
=> 180/27=20/3
=> A/6=20/3=6.20/3=40
=> B/9=20/3.9=60
=> C/12=20/3.12=80
Vậy A=40
B=60
C=80
a) Từ 5A = 3B \(\Rightarrow\frac{A}{3}=\frac{B}{5}\Rightarrow\frac{A}{9}=\frac{B}{15}\)
Từ 3B=15C \(\Rightarrow\frac{B}{15}=\frac{C}{3}\)
\(\Rightarrow\frac{A}{9}=\frac{B}{15}=\frac{C}{3}\) . Áp dụng t/c dãy tỉ số bằng nhau :
\(\frac{A}{9}=\frac{B}{15}=\frac{C}{3}=\frac{A+B+C}{9+15+3}=\frac{180}{27}=\frac{20}{3}\)
\(\Rightarrow\begin{cases}\frac{A}{9}=\frac{20}{3}\\\frac{B}{15}=\frac{20}{3}\\\frac{C}{3}=\frac{20}{3}\end{cases}\) \(\Rightarrow\begin{cases}A=60\\B=100\\C=20\end{cases}\)
b) Từ 3A=4B \(\Rightarrow\frac{A}{4}=\frac{B}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau :
\(\frac{A}{4}=\frac{B}{3}=\frac{A-B}{4-3}=20\)
\(\Rightarrow\begin{cases}\frac{A}{4}=20\\\frac{B}{3}=20\end{cases}\) \(\Rightarrow\begin{cases}A=80\\B=60\end{cases}\) => C = 180-80-60=40
Bạn ghi thêm đơn vị độ vào mỗi kết quả nhé :)
a ) \(A+B+C=180\left(1\right)\)
\(5A=3B\Leftrightarrow B=\frac{5}{3}A\left(2\right)\)
\(5A=15C\Leftrightarrow C=\frac{1}{3}A\)
Thay ( 2 ) và ( 3 ) và ( 1 ) vào :
Ta có : \(A+\frac{5}{3}A+\frac{1}{3}A=180\)
\(3A=180\)
\(\Rightarrow A=60\)
\(\Rightarrow B=100\)
\(\Rightarrow C=20\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)