\(P=\dfrac{x}{-xy+x+1}-\dfrac{y}{yz-y+1}+\dfrac{z}{xz+z-1}\) với 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2017

Các thánh giúp e nha Ace Legona Nguyễn Huy Tú Toshiro Kiyoshi Phương An Akai Haruma @Nguyễn Vũ Phượng Thảo

18 tháng 3 2017

\(\left\{{}\begin{matrix}xy+yz+xz=0\\x,y,z\ne0\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{x}=0\)\(\Rightarrow\dfrac{1}{z^3}+\dfrac{1}{y^3}+\dfrac{1}{x^3}=\dfrac{3}{zyz}\)

\(A=\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=\dfrac{3xyz}{xyz}=3\)

6 tháng 4 2017

ta có : \(xy+yz+xz=0\Rightarrow\dfrac{xy+yz+xz}{xyz}=0\)

\(\Leftrightarrow\dfrac{1}{z}+\dfrac{1}{x}+\dfrac{1}{y}=0\Rightarrow\dfrac{1}{z}=-\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow\dfrac{1}{z^3}=-\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^3\)

\(\Rightarrow\dfrac{1}{z^3}=-\left(\dfrac{1}{x^3}+3.\dfrac{1}{x^2}.\dfrac{1}{y}+3.\dfrac{1}{x}.\dfrac{1}{y^2}+\dfrac{1}{y^3}\right)\)

\(\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=-3.\dfrac{1}{x}.\dfrac{1}{y}.\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=3.\dfrac{1}{xyz}\)

Do đó : \(xyz.\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=3\)

\(\Leftrightarrow\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}=3\)

\(\Leftrightarrow\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)

Vậy giá trị của biểu thức \(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)

NV
2 tháng 3 2019

Do \(xyz\ne0\) ta có:

\(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=0\Leftrightarrow xyz\left(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}\right)=0\Leftrightarrow x+y+z=0\)

Lại có: \(x^3+y^3+z^3=x^3+y^3+3x^2y+3y^2x-3xy\left(x+y\right)+z^3\)

\(=\left(x+y\right)^3+z^3-3xy\left(-z\right)=\left(x+y+z\right)\left(\left(x+y\right)^2-\left(x+y\right)z+z^2\right)+3xyz=3xyz\)

Vậy nếu \(x+y+z=0\) thì \(x^3+y^3+z^3=3xyz\)

\(P=\dfrac{x^2}{yz}+\dfrac{y^2}{xz}+\dfrac{z^2}{xy}=\dfrac{x^3}{xyz}+\dfrac{y^3}{xyz}+\dfrac{z^3}{xyz}=\dfrac{x^3+y^3+z^3}{xyz}=\dfrac{3xyz}{xyz}=3\)

2 tháng 3 2017

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

<=> \(\dfrac{yz}{xyz}+\dfrac{xz}{xyz}+\dfrac{xy}{xyz}=0\)

<=> yz + xz + xy = 0

=> (yz)3 + (xz)3 + (xy)3 = 3x2y2z2

\(A=\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\)

= \(\dfrac{y^3z^3}{x^2y^2z^2}+\dfrac{x^3z^3}{x^2y^2z^2}+\dfrac{x^3y^3}{x^2y^2z^2}\)

= \(\dfrac{3x^2y^2z^2}{x^2y^2z^2}\)

= 3

2 tháng 3 2017

duy khang nguyễn https://hoc24.vn/hoi-dap/question/133551.html

29 tháng 12 2017

Nhân ra thôi

30 tháng 12 2017

\(A=\left(xy+yz+xz\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-xyz\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\\ =y+x+\dfrac{xy}{z}+y+z+\dfrac{yz}{x}+x+z+\dfrac{xz}{y}-\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)\\ =2\left(x+y+z\right)=2.2018=4036\)