K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2023

\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{37.38.39}\)

\(A=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{37.38.39}\right)\)

\(A=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{37.38}-\dfrac{1}{38.39}\right)\)

\(A=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{38.39}\right)\)

\(A=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{1482}\right)\)

\(A=\dfrac{1}{2}.\dfrac{370}{741}=\dfrac{185}{741}\)

26 tháng 4 2017

a) Ta có:

3A= \(1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\left(1\right)\)

A= \(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\left(2\right)\)

Lấy (1) - (2) ta được:

1-\(\dfrac{1}{3^{100}}\)

b) Ta xét:

\(\dfrac{1}{1.2}-\dfrac{1}{2.3}=\dfrac{2}{1.2.3},...,\dfrac{1}{37.38}-\dfrac{1}{38.39}=\dfrac{2}{37.38.39}\)

Ta có:

2B=\(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+..+\dfrac{2}{37.38.39}\)

=\(\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}\right)+\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)+..+\left(\dfrac{1}{37.38}-\dfrac{1}{38.39}\right)\)

=\(\dfrac{1}{1.2}-\dfrac{1}{38.39}=\dfrac{740}{38.39}=\dfrac{370}{741}\)

Vậy \(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+..+\dfrac{2}{37.38.39}\)

=\(\dfrac{370}{741}\)

Nếu bn cảm thấy mk đúng tick cho mk nhé!

haha

1 tháng 9 2017

A= \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{4.5.6}+....+\dfrac{1}{37.38.39}\)

A=\(\dfrac{1}{1}-\dfrac{1}{39}\)

A=\(\dfrac{38}{39}\)

còn lại tự làm do mình có việc chút

31 tháng 8 2017

Chưa học

14 tháng 11 2017

\(\frac{109}{760}\)nha

14 tháng 11 2017

109/760 nha

theo mk vậy

chúc bạn học tốt

^_^ !

4 tháng 5 2017

Câu hỏi của Dung Van - Toán lớp 6 | Học trực tuyến tìm kĩ trước khi hỏi nhé.

4 tháng 5 2017

trùng tên ????????????????

20 tháng 3 2018

Ta có :

\(\dfrac{1}{1.2}-\dfrac{1}{2.3}=\dfrac{3}{1.2.3}-\dfrac{1}{1.2.3}=\dfrac{2}{1.2.3}\)

\(\dfrac{1}{2.3}-\dfrac{1}{3.4}=\dfrac{4}{2.3.4}-\dfrac{2}{2.3.4}=\dfrac{2}{2.3.4}\)

...

Do đó :

\(\dfrac{1}{1.2.3}=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}\right)\)

\(\dfrac{1}{2.3.4}=\dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)\)

Vậy :

\(M=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{132}\right)\)

\(=\dfrac{1}{2}.\dfrac{65}{132}=\dfrac{65}{264}\)

\(\dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{18.19}+\dfrac{1}{19.20}\right)\) Gio thi tu ma lam ko thích viết nữa mệt

23 tháng 3 2017

bn ơi mk nghĩ bn nên tôn trọng mk một chút! Nếu bn giúp đc thì mk cảm ơn rất nhiều. Còn bn không làm đc thì để cho người khác làm! bn ko thích làm thì mk cx ko mong bn giải nửa chừng như vậy, mk vừa ko hiểu j mà còn bị tự ái khi bn nói như vậy, mong bn hiểu!!mk góp ý thật lòng, ko chỉ đối với mk mà với những bn khác cx zậy!!

17 tháng 4 2017

Ta có :

\(S=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+..............+\dfrac{1}{98.99.100}\)

\(S=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+................+\dfrac{2}{98.99.100}\right)\)

\(S=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...........+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)\)

\(S=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{99.100}\right)\)

\(S=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)\)

\(S=\dfrac{1}{2}.\dfrac{4949}{9900}\)

\(S=\dfrac{4949}{19800}\)

~ Chúc bn học tốt ~

17 tháng 4 2017

Cảm ơn bạn, đúng y chang kết quả của mình luôn

21 tháng 3 2017

E=\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\)

* Áp dụng công thức: \(\dfrac{k}{n.\left(n+k\right)}\)=\(\dfrac{1}{n}-\dfrac{1}{n+k}\)

ta có : \(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-....+\dfrac{1}{98.99}-\dfrac{1}{99.100}\)

E=\(\dfrac{1}{1.2}-\dfrac{1}{99.100}\)

E= ........(tính ra)

21 tháng 3 2017

E=4949/9900

14 tháng 4 2017

\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{10.11.12}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{10.11.12}\right)\)

\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{132}\right)\)

\(=\dfrac{1}{2}.\dfrac{65}{132}\)

\(=\dfrac{65}{264}\)

Vậy...