Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
a, \(\frac{7}{12}+\frac{5}{6}+\frac{1}{4}-\frac{3}{7}-\frac{5}{12}\)
\(=\left(\frac{7}{12}-\frac{5}{12}+\frac{5}{6}+\frac{1}{4}\right)-\frac{3}{7}=\left(\frac{7}{12}-\frac{5}{12}+\frac{10}{12}+\frac{3}{12}\right)-\frac{3}{7}=\frac{5}{4}-\frac{3}{7}=\frac{23}{28}\)
b, \(\frac{11\cdot3^{22}\cdot3^7-9^{15}}{\left(2\cdot3^{14}\right)^2}=\frac{11\cdot3^{29}-3^{30}}{2^2\cdot3^{28}}=\frac{3^{29}\left(11-3\right)}{3^{28}\cdot4}=\frac{3\cdot8}{4}=6\)
\(=\frac{5\left(\frac{1}{3}+\frac{1}{8}-\frac{1}{7}\right)}{-4\left(\frac{1}{3}+\frac{1}{8}-\frac{1}{7}\right)}:\frac{2\left(\frac{1}{3}-\frac{1}{12}+\frac{3}{7}\right)}{ }\)
MÃu thứ hai sao ý
Đặt P = ... ( biểu thức đề bài )
Nhận xét: Với \(k\inℕ^∗\) ta có:
\(\frac{k+2}{k!+\left(k+1\right)!+\left(k+2\right)!}=\frac{k+2}{k!+\left(k+1\right).k!+\left(k+2\right).k!}=\frac{k+2}{2.k!\left(k+2\right)}=\frac{1}{2.k!}\)
\(\Rightarrow\)\(P=\frac{1}{2.1!}+\frac{1}{2.2!}+...+\frac{1}{2.6!}=\frac{1}{2}\left(1+\frac{1}{2}+...+\frac{1}{720}\right)=...\)
a. \(1\frac{5}{7}\)-\(\frac{9}{7}\)*\(\frac{16}{9}\)
=\(\frac{12}{7}\)-\(\frac{16}{7}\)
=\(\frac{-4}{7}\)
b. \(\frac{-5}{8}\):\(\frac{1}{4}\)-\(\frac{6}{13}\)*4+\(\frac{3}{8}\)
=\(\frac{-5}{8}\cdot\)4-\(\frac{6}{13}\)*4+\(\frac{3}{8}\)
=4*(\(\frac{-5}{8}\)-\(\frac{6}{13}\))+\(\frac{3}{8}\)
=4*\(\frac{-113}{104}\)+\(\frac{3}{8}\)
=\(\frac{-113}{26}\)+\(\frac{3}{8}\)
=\(\frac{-413}{104}\)
c.( \(\frac{3}{8}\)+\(\frac{-1}{4}\)-\(\frac{5}{12}\)):\(\frac{1}{3}\)
=\(\frac{-7}{24}\)*3
=\(\frac{-7}{8}\)
Học tốt
a)
\(\begin{array}{l}\frac{4}{{ - 3}} + \frac{{ - 22}}{5} =\frac{-4}{{3}} + \frac{{ - 22}}{5}= \frac{{-4.5}}{{3.5}} + \frac{{ - 22.3}}{{5.3}}\\ = \frac{{-20}}{{15}} + \frac{{-66}}{{15}} = \frac{{ - 86}}{{ 15}}\end{array}\)
b)
\(\begin{array}{l}\frac{{ - 5}}{{ - 6}} + \frac{7}{{ - 8}} = \frac{{5}}{{6}} + \frac{-7}{{8}}= \frac{{5.4}}{{6.4}} + \frac{{-7.3}}{{8.3}}\\ = \frac{{20}}{{24}} + \frac{{-21}}{{24}} = \frac{-1}{{24}}\end{array}\).