K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2020

1. Ta có :

\(4A=\frac{2^2\left(2^{18}-3\right)}{2^{20}-3}=\frac{2^{20}-12}{2^{20}-3}=\frac{2^{20}-3-9}{2^{20}-3}=\frac{2^{20}-3}{2^{20}-3}-\frac{9}{2^{20}-3}=1-\frac{9}{2^{20}-3}\)

\(4B=\frac{2^2\left(2^{20}-3\right)}{2^{22}-3}=\frac{2^{22}-12}{2^{22}-3}=\frac{2^{22}-3-9}{2^{22}-3}=\frac{2^{22}-3}{2^{22}-3}-\frac{9}{2^{22}-3}=1-\frac{9}{2^{22}-3}\)

\(2^{20}-3< 2^{22}-3\)

\(\Leftrightarrow\frac{9}{2^{20}-3}>\frac{9}{2^{22}-3}\)

\(\Leftrightarrow1-\frac{9}{2^{20}-3}< 1-\frac{9}{2^{22}-3}\)

\(\Leftrightarrow4A< 4B\)

\(\Leftrightarrow A< B\)

Vậy...

b/ Tương tự

14 tháng 8 2018

\(Q=\frac{2010+2011+2012}{2011+2012+2013}\)

\(Q=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

Ta có :

\(\hept{\begin{cases}\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\\\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\\\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\end{cases}}\)

\(\Rightarrow P>Q\)