Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x + 1 ) + ( x + 2 ) + ( x + 3 ) +... + ( x + 100 ) = 5750
( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 100 ) = 5750
( x . 100 ) + ( 1 . 100 ) . 100 : 2 = 5750
( x . 100 ) + 5050 = 5750
x . 100 = 5750 - 5050
x . 100 = 700
x = 700 : 100
x = 7
Vậy x = 7
a) \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\right)\)
\(2A=1-\frac{1}{3^n}\)
\(A=\frac{1-\frac{1}{3^n}}{2}\)
b) Gọi số cần tìm là ab (a khác 0; a,b là các chữ số)
Ta có: ab.75 = x2 \(\left(x\ne0\right)\)
=> ab.3.52 = x2
Để ab.75 là 1 số chính phương thì ab = 3.k2 \(\left(k\ne0\right)\)
Lại có: 9 < ab < 100 => 9 < 3.k2 < 100
=> 3 < k2 < 34
Mà k2 là số chính phương nên \(k^2\in\left\{4;9;16;25\right\}\)
\(\Rightarrow ab\in\left\{12;27;48;75\right\}\)
Vậy số cần tim là 12; 27; 48; 75
c) Đặt \(B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{101}{3^{101}}\)
\(3B=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\)
\(3B-B=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{101}{3^{101}}\right)\)
\(2B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)
\(6B=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\)
\(6B-2B=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\right)\)
\(4B=3-\frac{101}{3^{100}}-\frac{1}{3^{100}}+\frac{101}{3^{101}}\)
\(4B=3-\frac{303}{3^{101}}-\frac{3}{3^{101}}+\frac{101}{3^{101}}\)
\(4B=3-\frac{205}{3^{101}}< 3\)
\(\Rightarrow B< \frac{3}{4}\)
Ta có: a = (1 - 1/2) + (1 - 1/4) + (1 - 1/6) +...+ (1 - 1/80)
= (1 + 1 + 1 +...+ 1) - (1/2 + 1/4 + 1/6 + ... + 1/80)
= 40 - ...
Xét \(n^3-n=n\left(n^2-1\right)\)
\(=n\left(n^2-n+n-1\right)=n\left[n\left(n-1\right)+\left(n-1\right)\right]\)
\(=n.\left(n-1\right)\left(n+1\right)\)
Vì \(n^3-n=\left(n-1\right)n\left(n+1\right)\)
\(\Rightarrow n^3=\left(n-1\right)n\left(n+1\right)+n\)
Thay vào ta có :
\(1^3+2^3+...+n^3\)\(=0.1.2+1+1.2.3+2+...+\left(n-1\right)n\left(n+1\right)+n\)
\(=1.2.3+2.3.4+...+\left(n-1\right)n\left(n+1\right)+\left(1+2+...+n\right)\)
Đặt \(S=1.2.3+2.3.4+...+\left(n-1\right)n\left(n+1\right)\)
\(\Rightarrow4S=1.2.3.4+2.3.4.\left(5-1\right)+...+\left(n-1\right)n\left(n+1\right)\)\(\left[\left(n+2\right)-\left(n-2\right)\right]\)
\(\Rightarrow4S=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow S=\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)
Đặt \(B=1+2+3+...+n\)
\(\Rightarrow B=\frac{n\left(n+1\right)}{2}=\frac{2.n\left(n+1\right)}{4}\)
\(\Rightarrow1^3+2^3+...+n^3=B+S=\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)+2\left(n+1\right)n}{4}\)