K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HX
1
30 tháng 3 2020
x2 + 2. ( m- 1 ) .x - 4 = 0
\(\Delta'=\left(m-1\right)^2+4>0\)
=> Với \(\forall\)m thì phương trình đều có 2 nghiệm phân biệt
x1 = - ( m - 1 ) + \(\sqrt{\left(m-1\right)^2+4}\)
\(x_2=-\left(m-1\right)-\sqrt{\left(m-1\right)^2+4}\)
Để x1 và x2 là 1 số nguyên thì m phải là số nguyên và \(\sqrt{\left(m-1\right)^2+4}\)là số nguyên .
Có \(\left(m-1\right)^2\ge0\)
\(\Rightarrow\left(m-1\right)^2+4\ge4\)
\(\Rightarrow\sqrt{\left(m-1\right)^2+4}\ge2\)
\(\Rightarrow\left(m-1\right)^2+4=4\Rightarrow m=1\)
Vậy m = 1
\(\Delta=\left(n+4\right)^2-4\left(4n-25\right)=n^2+8n+16-16n+100=n^2-8n+116>0\)
Vì hệ số của x2 là 1 nên để PT có nghiệm nguyên thì \(n^2-8n+116\) là số chính phương.
Giả sử \(n^2-8n+116=a^2\Rightarrow a^2-\left(n-4\right)^2=100\Rightarrow\left(a-n+4\right)\left(a+n-4\right)=100\)
Xét các ước của 100 và chú ý: a + n - 4 > a - n + 4. Từ đó tìm ra n.