K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2015

\(\Delta=\left(n+4\right)^2-4\left(4n-25\right)=n^2+8n+16-16n+100=n^2-8n+116>0\)

Vì hệ số của x2 là 1 nên để PT có nghiệm nguyên thì \(n^2-8n+116\) là số chính phương.

Giả sử \(n^2-8n+116=a^2\Rightarrow a^2-\left(n-4\right)^2=100\Rightarrow\left(a-n+4\right)\left(a+n-4\right)=100\)

Xét các ước của 100 và chú ý: a + n - 4 > a - n + 4. Từ đó tìm ra n.

18 tháng 11 2020

\(\text{đen ta }=\left(n+4\right)^2-4\left(4n-25\right)=n^2+116\text{ là số chính phương}\)

đến đây thì là 1 bài đơn giản

21 tháng 5 2020

ư365jn5yb

30 tháng 3 2020

x+ 2. ( m- 1 ) .x - 4 = 0

\(\Delta'=\left(m-1\right)^2+4>0\)

=> Với \(\forall\)m thì phương trình đều có 2 nghiệm phân biệt 

x1 = - ( m - 1 ) + \(\sqrt{\left(m-1\right)^2+4}\)

\(x_2=-\left(m-1\right)-\sqrt{\left(m-1\right)^2+4}\)

Để xvà x2 là 1 số nguyên thì m phải là số nguyên và \(\sqrt{\left(m-1\right)^2+4}\)là số nguyên . 

Có \(\left(m-1\right)^2\ge0\)

\(\Rightarrow\left(m-1\right)^2+4\ge4\)

\(\Rightarrow\sqrt{\left(m-1\right)^2+4}\ge2\)

\(\Rightarrow\left(m-1\right)^2+4=4\Rightarrow m=1\)

Vậy m = 1