Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta được :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\Rightarrow x=16;y=24;z=30\)
Vậy x= 16 ; y = 24 ; z= 30
1) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{7}=\frac{2x-4y+3z}{2.2-4.3+3.7}=\frac{-39}{13}=-3\)
\(\Leftrightarrow\hept{\begin{cases}x=-3.2=-6\\y=-3.3=-9\\z=-3.7=-21\end{cases}}\)
2) \(9x=10y\Leftrightarrow\frac{x}{10}=\frac{y}{9},4y=3z\Leftrightarrow\frac{y}{9}=\frac{z}{12}\)
suy ra \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
\(\Leftrightarrow\hept{\begin{cases}x=6.10=60\\y=6.9=54\\z=6.12=72\end{cases}}\)
3) \(3x=4y=6z\Leftrightarrow\frac{x}{4}=\frac{y}{3}=\frac{z}{2}=\frac{x-y+z}{4-3+2}=\frac{-9}{3}=-3\)
\(\Leftrightarrow\hept{\begin{cases}x=-3.4=-12\\y=-3.3=-9\\z=-3.2=-6\end{cases}}\)
Sửa lại đề nha
\(\frac{x}{3}=\frac{y}{6}=\frac{z}{10}\)
Mà x+z=7+y
Suy ra x+z-y=7
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{6}=\frac{z}{10}=\frac{x+z-y}{3+10-6}=\frac{7}{7}=1\)
Suy ra;
\(\frac{x}{3}=1;x=3.1=3\)
\(\frac{y}{6}=1;y=6.1=6\)
\(\frac{z}{10}=1;z=10.1=10\)
Vậy x=3;y=6;z=10
ủng hộ đầu xuân năm mới tròn 770 nha
Bài 9:
Ta có: \(\dfrac{12}{-6}=\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{z}{-17}=\dfrac{-t}{-9}\)
\(\Leftrightarrow\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{-z}{17}=\dfrac{t}{9}=-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=-2\\\dfrac{-y}{3}=-2\\\dfrac{-z}{17}=-2\\\dfrac{t}{9}=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-10\\-y=-6\\-z=-34\\t=-18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-10\\y=6\\z=34\\t=-18\end{matrix}\right.\)
Vậy: (x,y,z,t)=(-10;6;34;-18)
Bài 11:
Ta có: \(\dfrac{-7}{6}=\dfrac{x}{18}=\dfrac{-98}{y}=\dfrac{-14}{z}=\dfrac{t}{102}=\dfrac{u}{-78}\)
\(\Leftrightarrow\dfrac{x}{18}=\dfrac{-98}{y}=\dfrac{-14}{z}=\dfrac{t}{102}=\dfrac{u}{-78}=\dfrac{-7}{6}\)
Ta có: \(\dfrac{x}{18}=\dfrac{-7}{6}\)
\(\Leftrightarrow x=\dfrac{18\cdot\left(-7\right)}{6}=-21\)
Ta có: \(\dfrac{-98}{y}=\dfrac{-7}{6}\)
\(\Leftrightarrow y=\dfrac{-98\cdot6}{-7}=84\)
Ta có: \(\dfrac{-14}{z}=\dfrac{-7}{6}\)
\(\Leftrightarrow z=\dfrac{-14\cdot6}{-7}=12\)
Ta có: \(\dfrac{u}{-78}=\dfrac{-7}{6}\)
\(\Leftrightarrow u=\dfrac{-78\cdot\left(-7\right)}{6}=\dfrac{78\cdot7}{6}=91\)
Ta có: \(\dfrac{t}{102}=\dfrac{-7}{6}\)
\(\Leftrightarrow t=\dfrac{-7\cdot102}{6}=-7\cdot17=-119\)
Vậy: (x,y,z,t,u)=(-21;84;12;-119;91)
x-y+y-z+z-x= (-9)+(-10)+ 11 = -8
2x= -8
x= (-8) : 2 = -4
ta có ( -4) - y =-9
y= ( -4 ) - ( -9 ) = 5
5 - z = -10
z= 5 - ( -10 )
z= 15
vậy x= -4; y= 5; z= 15
Ta có:\(\frac{x}{y}=\frac{10}{9}\Rightarrow\frac{x}{y}=\frac{30}{27}\Rightarrow\frac{x}{30}=\frac{y}{27}\left(1\right)\)
\(\frac{y}{z}=\frac{3}{4}\Rightarrow\frac{y}{z}=\frac{27}{36}\Rightarrow\frac{y}{27}=\frac{z}{36}\left(2\right)\)
Từ (1) và (2) suy ra:\(\frac{x}{30}=\frac{y}{27}=\frac{z}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x}{30}=\frac{y}{27}=\frac{z}{36}=\frac{x-y+z}{30-27+36}=\frac{78}{39}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{30}=2\\\frac{y}{27}=2\\\frac{z}{36}=2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)