Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right).y=\frac{2}{3}\)
\(\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+\frac{1}{2}.\left(\frac{1}{7}-\frac{1}{9}\right)+\frac{1}{2}.\left(\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\frac{1}{2}.\left(1-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\left(1-\frac{1}{11}\right).y=\frac{4}{3}\)
\(\frac{10}{11}.y=\frac{4}{3}\)
\(\Rightarrow y=\frac{22}{15}\)
\(\frac{2}{3}\cdot y-\frac{12}{3}:\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\right)=\frac{1}{3}\)\(\frac{1}{3}\)
\(\frac{2}{3}\cdot y-4:\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}\right)=\frac{1}{3}\)
\(\frac{2}{3}\cdot y-4:\left(\frac{3-1}{1\cdot3}+\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+\frac{9-7}{7\cdot9}+\frac{11-9}{9\cdot11}+\frac{13-11}{11\cdot13}\right)=\frac{1}{3}\)
\(\frac{2}{3}\cdot y-4:\left(1+\frac{1}{3}-\frac{1}{3}+\frac{1}{5}-\frac{1}{5}+\frac{1}{7}-\frac{1}{7}+\frac{1}{9}-\frac{1}{9}+\frac{1}{11}-\frac{1}{11}+\frac{1}{13}\right)\)\(=\frac{1}{3}\)
\(\frac{2}{3}\cdot y-4:\left(\frac{1}{1}+\frac{1}{3}\right)=\frac{1}{3}\)
\(\frac{2}{3}\cdot y-4:\frac{4}{3}\)\(=\frac{1}{3}\)
\(\frac{2}{3}\cdot y-4\cdot\frac{3}{4}=\frac{1}{3}\)
\(\frac{2}{3}\cdot y-3=\frac{1}{3}\)
\(\frac{2}{3}\cdot y=\frac{1}{3}+3\)
\(\frac{2}{3}\cdot y=\frac{10}{3}\)
\(y=\frac{10}{3}:\frac{2}{3}\)
y=5
Ta có : \(\frac{x}{4}=\frac{y}{7}\)
\(\Rightarrow\frac{x^2}{16}=\frac{y^2}{49}=\frac{3x^2}{48}=\frac{4y^2}{196}=\frac{3x^2-4y^2}{48-196}=\frac{100}{-148}=-\frac{25}{37}\)
Thay vào là ra nhé !:D
Cái chỗ Nguyễn Quang Trung đúng ròi
\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=-\frac{25}{37}\\\frac{y}{7}=-\frac{25}{37}\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{100}{37}\\y=-\frac{175}{37}\end{cases}}\)
A) x/y-3/8=1 x/y-3/8=1/2 B)4/9:x/y=1 4/9:x/y=2/3
x/y=1+3/8 x/y=1/2+3/8 x/y=4/9:1 x/y=4/9:2/3
x/y=8/8+3/8 x/y=4/8+3/8 x/y=4/9 x/y=2/3
x/y=11/8 x/y=7/8
y x 6 + y x 3 + y = 80
y x 6 + y x 3 + y x 1 = 80
y x (6+3+1)=80
y x 10 =80
y =80:10
y =8
a) \(y\times6+y\times3+y=80\)
\(\Leftrightarrow y\times\left(6+3+1\right)=80\)
\(\Leftrightarrow y\times10=80\)
\(\Leftrightarrow y=80\div10\)
\(\Leftrightarrow y=8\)
b) \(y+y\div0,5+y\div0,25+y\div0,125=15\)
\(\Leftrightarrow y+y\times2+y\times4+y\times8=15\)
\(\Leftrightarrow y\times\left(1+2+4+8\right)=15\)
\(\Leftrightarrow y\times15=15\)
\(\Leftrightarrow y=1\)
a) Ta có: 3x = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)
7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)
Vậy ...
b) Tương tự câu trên
c) Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) => \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
=> \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=12\\\frac{y}{\frac{4}{3}}=12\\\frac{z}{\frac{5}{4}}=12\end{cases}}\) => \(\hept{\begin{cases}x=12\cdot\frac{3}{2}=18\\y=12\cdot\frac{4}{3}=16\\z=12\cdot\frac{5}{4}=15\end{cases}}\)
Vậy ....
d) HD : Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
(Sau đó áp dụng t/c của dãy tỉ số bằng nhau rồi làm tương tự như trên)
e) HD: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\) => x = 2k; y = 3k; z = 5k (*)
Thay x = 2k; y = 3k ; z = 5k vào xyz = 810 => tìm k => thay k ngược lại vào (*)
Nếu ko hiểu cứ hỏi t
b,Sửa đề : \(\frac{x}{3}=\frac{y}{4};\frac{y}{2}=\frac{z}{5}\)\(2x-3y+z=6\)
Ta có : \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{6}=\frac{y}{8}\)(*)
\(\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{8}=\frac{z}{20}\)(**)
Từ (*);(**) \(\Rightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{8}=\frac{z}{20}=\frac{2x-3y+z}{2.6-3.8+20}=\frac{49}{8}\)
\(x=36,75;y=49;z=122,5\)
a) 186 - 3 x y = 99
3 x y = 186 - 99
3 x y = 87
y = 87/3
b) y :2 + y:3 + y:4 = 15
y x 1/2 + y x 1/3 + y x 1/4 = 15
y x ( 1/2 + 1/3 + 1/4) =15
y x 13/12 = 15
y = 15 : 13/12
y = 180/13
Tìm y biết
a 186 -3 x y = 99
3 x y = 186 - 99
3 x y = 87
y = 87 : 3
y = 29
b y :2 + y : 3 + y : 4 = 15
\(\frac{y}{2}+\frac{y}{3}+\frac{y}{4}=15\)
\(\frac{6\times y}{12}+\frac{4\times y}{12}+\frac{3\times y}{12}=\frac{180}{12}\)
\(6\times y+4\times y+3\times y=180\)
\(\left(6+4+3\right)\times y=180\)
\(13\times y=180\)
\(y=180:13\)
\(y=\frac{180}{13}\)
MÌNH GHI RA TỪNG CHI TIẾT RỒI NHA , CHÚC BẠN HỌC TỐT !!!