Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+y+2015}{z}=\frac{y+z-2016}{x}=\frac{z+x+1}{y}.\)
\(=\frac{x+y+2015+y+z-2016+z+x+1}{x+y+z}\)\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Do đó x+y+z=1 => x+y=1-z => \(\frac{2016-z}{z}=2\Rightarrow2016-z=2z\Leftrightarrow2016=3z\)
=> z= 672
Tương tự : x= -2015/3; y=2/3
Ta có:
\(\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
\(=1+\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{y}{z+x}=3+\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)
\(\Rightarrow x+y+z=\frac{3+\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)}{\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}}=\frac{3+\frac{7}{10}}{\frac{2}{5}}=\frac{37}{4}\)
Ta có :
\(\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+x}+\frac{1}{z+x}\right)\)
\(=1+\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{y}{z+x}=3+\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)
\(\Rightarrow x+y+z=\frac{3+\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)}{\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}}=\frac{3+\frac{7}{10}}{\frac{2}{5}}=\frac{37}{4}\)
cộng 1 vào mỗi phân số của biểu thức đầu ta được
\(\frac{x+y+z}{y+z}+\frac{x+y+z}{x+z}+\frac{x+y+z}{x+y}=\frac{37}{10}\\ \left(x+y+z\right)\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)=\frac{37}{10}\left(1\right)\)
thay giá trị biếu thức thứ 2 vào (1) ta được x + y + z = \(\frac{37}{4}\)
Áp dụng t/c dãy tỉ số bằng nhau :\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)
\(\Rightarrow\begin{cases}x+y+z=3t\\y+z+t=3x\\z+t+x=3y\\t+x+y=3z\end{cases}\) => x = y = z = t
Thay vào P được : \(P=1+1+1+1=4\)
Sao thủy
Sao kim
Trái đất
Sao hỏa
Sao mộc
Sao thổ
Sao thiên vương
Sao hải vương