\(2x^2+2y^2+z^2+25-6y-2xy-8x+2z\left(y-x\right)=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2019

\(2x^2+2y^2+z^2+25-6y-2xy-8x+2z\left(y-x\right)=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-2z\left(x-y\right)+z+\left(x^2-8x+16\right)+\left(y^2-6y+9\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2-2z\left(x-y\right)+z^2+\left(x-4\right)^2+\left(y-3\right)^2=0\)

\(\Leftrightarrow\left(x-y-z\right)^2+\left(x-4\right)^2+\left(y-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y-z=0\\x-4=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}z=1\\x=4\\y=3\end{cases}}\)

Vậy \(x=4\)\(y=3\)\(z=1\)

1 tháng 10 2020

Bạn tự tách hđt nhé! Gõ mỏi tay :v~

\(\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(y+z-2z\right)^2\)

\(y^2-2yz+z^2+z^2-2xz+x^2+x^2-2xy+y^2=\)\(6(z^2-yz-xz+y^2-xy+x^2)\)

\(2\left(x^2+y^2+z^2-yz-xz-xy\right)\)=\(6(z^2-yz-xz+y^2-xy+x^2)\)

\(x^2+y^2+z^2-yz-xz-xy\) = \(3(z^2-yz-xz+y^2-xy+x^2)\)

\(2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\forall x;y;z\)

Do đó \(\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)

\(x=y=z\)

1 tháng 10 2020

j lắm thế :)))

Bài 2 : ~ bài 1 ngán quá =)))

a, Có

\(5x^2+10y^2-6xy-4x-2y+3\)

\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)+1\)

\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1>0\forall x;y\)

Do đó không tồn tại x , y tm \(5x^2+10y^2-6xy-4x-2y+3=0\)

b, \(x^2+4y^2+z^2-2x-6x+6y+15=0\)

Câu này đề sai :v bài ngta không cho 2 lần x vậy đâu bạn :)))

2 tháng 9 2018

\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)

\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)

\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)

\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)

\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)

28 tháng 10 2020

Ta có: \(2x^2+2y^2+z^2+25-6y-2xy-8x+2z\left(y-x\right)=0\)

\(\Leftrightarrow\left(x^2-8x+16\right)+\left(y^2-6y+9\right)+\left(x^2-2xy+y^2\right)-2\left(x-y\right)z+z^2=0\)

\(\Leftrightarrow\left(x-4\right)^2+\left(y-3\right)^2+\left[\left(x-y\right)^2-2\left(x-y\right)z+z^2\right]=0\)

\(\Leftrightarrow\left(x-4\right)^2+\left(y-3\right)^2+\left(x-y-z\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-4\right)^2=0\\\left(y-3\right)^2=0\\\left(x-y-z\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=1\end{cases}}\)

2 tháng 11 2022

Chỗ (x²-8x+16) 

16 là ở đâu ra vậy bạn

Chỗ (y²-6y+9 ) 

9 là ở đâu ra nx v

NV
10 tháng 10 2020

a/

\(\Leftrightarrow\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(y^2-6y+9\right)-19=0\)

\(\Leftrightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2=19\)

Do 19 không thể phân tích thành tổng của 2 số chính phương nên pt vô nghiệm

b/

\(\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Do x; y nguyên dương nên \(\left(2x+2y\right)^2>0\Rightarrow VT>0\)

Pt vô nghiệm

NV
10 tháng 10 2020

c/

\(\Leftrightarrow\left(x^2+4y^2+25-4xy+10x-20y+25\right)+\left(y^2-2y+1\right)+\left|x+y+z\right|=0\)

\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)

Do x;y;z nguyên dương nên \(\left|x+y+z\right|>0\Rightarrow VT>0\)

Vậy pt vô nghiệm

d/

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

Do x;y;z nguyên dương nên vế phái luôn dương

Pt vô nghiệm

12 tháng 7 2019

bạn lấy vế phải trừ vế trái  , rồi nhóm lại ví dụ nhóm cái y+z-2x mũ 2 với y-z mũ 2 , rồi áp dụng hằng đẳng thức xong suy ra ... 

12 tháng 7 2019

xin lỗi vì không trình bài đủ nha , nó dài quá mình viết ra ko được , sr bạn nha