Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x-2\sqrt{x}\left(2+y\right)+y^2+1=0\) (1) (ĐK:\(x\ge0\)0)
Đặt \(\sqrt{x}=z\) ta có phương trình :
\(5z^2-2\left(2+y\right)z+y^2+1=0\) (2)
Xem (2) là phương trình bậc hai ẩn z thì phương trình có nghiệm khi \(\Delta'=0\Rightarrow y=\frac{1}{2}\)
Thế vào (1) ta tìm được \(x=\frac{1}{2}\)
vậy \(x=\frac{1}{2};y=\frac{1}{2}\)
Ta có : \(9^{x-1}=\frac{1}{9}\)
=> \(9^{x-1}=9^{-1}\)
=> x - 1 = -1
=> x = 0
ko biết bạn học mũ âm chưa nêu chưa thì mk xin lỗi
=>
\(\text{a) }\left(x-1\right)^2+\left|y+3\right|=0\)
Vì \(\left(x-1\right)^2\text{ và }\left|y+3\right|\text{ đều }\ge0\)
nên để \( \left(x-1\right)^2+\left|y+3\right|=0\)
thì \(\left(x-1\right)^2=0\text{ và }\left|y+3\right|=0\)
\(\Rightarrow x-1=0\text{ và }y+3=0\)
\(\Rightarrow x=1\text{ và }y=-3\)
\(\text{b) }\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)
\(\text{vì }\left(x^2-9\right)^2\text{ và }\left|2-6y\right|^5\text{ đều }\ge0\)
Nên để \(\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)
Thì \(\left(x^2-9\right)^2+\left|2-6y\right|^5=0\)
hay \(\left(x^2-9\right)^2=0\text{ và }\left|2-6y\right|^5=0\)
\(\Rightarrow x^2-9=0\text{ và }2-6y=0\)
\(\Rightarrow x^2=9\text{ và }6y=2\)
\(\Rightarrow x=\pm3\text{ và }y=\frac{1}{3}\)
Câu c) làm tương tự nha
Bài 4.
\(\left|x-1\right|+\left|y-2\right|+\left(z-x\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-2=0\\z-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=z=1\\y=2\end{cases}}\)
Bài 3.
\(\left|x-1\right|+\left|2x-2\right|+\left|4x-4\right|+\left|5x-5\right|=36\)
\(\Leftrightarrow\left|x-1\right|+2\left|x-1\right|+4\left|x-1\right|+5\left|x-1\right|=36\)
\(\Leftrightarrow12\left|x-1\right|=36\)
\(\Leftrightarrow\left|x-1\right|=3\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=3\\x-1=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-2\end{cases}}\)
Ta có :
\(\hept{\begin{cases}|x-\frac{1}{2}|\ge0\\|y+\frac{2}{3}|\ge0\\|x^2+xz|\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}|x-\frac{1}{2}|+|y+\frac{2}{3}|+|x^2+xz|=0\\|x-\frac{1}{2}|+|y+\frac{2}{3}|+|x^2+xz|>0\end{cases}}\)
Theo đề \(\Rightarrow|x-\frac{1}{2}|+|y+\frac{2}{3}|+|x^2+xz|>0\)( loại )
\(\Rightarrow\hept{\begin{cases}|x-\frac{1}{2}|=0\\|y+\frac{2}{3}|=0\\|x^2+xz|=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{-2}{3}\\\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}.z\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{-2}{3}\\z=\frac{-1}{3}\end{cases}}\)
Chờ mãi ko ai làm nên t làm nhé !
\(\left(x-y\right)^2+x^2+z^2-2x+1=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+z^2=0\)
Do \(\left(x-y\right)^2\ge0;\left(x-1\right)^2\ge0;z^2\ge0\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+z^2\ge0\)
Khi đó \(x=y=1;z=0\)
Vậy x=y=1;z=0