K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2020

a)

pt <=>   \(\left(2x^2-8xy+8y^2\right)+\left(7x^2-28x+28\right)=0\)

<=>   \(2\left(x-2y\right)^2+7\left(x-2\right)^2=0\)

TA luôn có:   \(2\left(x-2y^2\right)+7\left(x-2\right)^2\ge0\forall x;y\) 

=> DẤU "=" XẢY RA <=>   \(\hept{\begin{cases}2\left(x-2y\right)^2=0\\7\left(x-2\right)^2=0\end{cases}}\)

<=>   \(\hept{\begin{cases}y=1\\x=2\end{cases}}\)

9 tháng 9 2020

b)

pt <=>   \(x^2+2y^2+5z^2-2xy-4yz-2z+1=0\)

<=>   \(\left(x^2-2xy+y^2\right)+\left(y^2-4yz+4z^2\right)+\left(z^2-2z+1\right)=0\)

<=>   \(\left(x-y\right)^2+\left(y-2z\right)^2+\left(z-1\right)^2=0\)

LẬP LUẬN TƯƠNG TỰ NHƯ CÂU a ta cũng được:

DẤU "=" XẢY RA <=>   \(\left(x-y\right)^2=\left(y-2z\right)^2=\left(z-1\right)^2=0\)

=>   \(x=y=2;z=1\)

22 tháng 10 2017

bài 1

a) 299992=(20000+9999)2=4.100002+40000.9999+99992

19999.39999+(10000+9999).(30000+9999)=3.100002+99992+40000.9999

ta có 4.100002>3.100002=>299992>19999.39999

b) chịu mình ko giỏi so sánh

bài 2

a) x2+8y2+9y=4y(x+3)

<=>x2-4xy+42+4y2+122+9=0

<=>(x-2y)2+(2y+3)2=0

xét (x-27)2\(\ge\)0 với mọi giá trị x,y

(2y+3)2\(\ge\)0 với mọi giá trị y

=>đồng thời xảy ra x-2y=0;2y-3=0

từ đó tìm ra y sau đó thay vào x-2y tìm nốt x

b)x2+2y2+5z2+1=2(xy+2yz+z)

<=>x2-2xy+y2+y2-4yz+4z2+z2-2z+1=0

<=>(x-y)2+(y-2z)2+(z-1)2=0

sau đó xm tyơng tự câu trên

c) câu này mình chịu

16 tháng 8 2024

chào, hiện tại tôi đang ở tương lai năm 2024, 2017 và 2018 vui lắm, cố lên nhé!

 

2 tháng 3 2020

Bài 2: 

Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)

\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)

Tìm GTNN: 

 Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)

\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)

\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)

Chúc bạn học tốt.

16 tháng 3 2020

Làm bài 1 ha :) 

Áp dụng BĐT Cô si ta có:

\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)

Khi đó:

\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)

Giống Holder ghê vậy ta :D

Ta có : \(4x^2+2y^2+2z^2-4xy-4zx+2yz-6y-10z+34=0\)

\(\Rightarrow\left(4x^2+y^2+z^2-4xy-4zx+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)

\(\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

Vì \(\hept{\begin{cases}\left(2x-y-z\right)^2\ge0\forall x,y,z\\\left(y-3\right)^2\ge0\forall y\\\left(z-5\right)^2\ge0\forall z\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(2x-y-z\right)^2=0\\\left(y-3\right)^2=0\\\left(z-5\right)^2=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2x-3-5=0\\y=3\\z=5\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2x=8\\y=3\\z=5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\left(1\right)\)

Lại có : \(S=\left(x-4\right)^{2017}+\left(y-4\right)^{2017}+\left(z-4\right)^{2017}\)

Thay \(\left(1\right)\)vào \(S\),ta được :

\(S=0^{2017}+\left(-1\right)^{2017}+1^{2017}\)

    \(=0-1+1=0\)

Vậy \(S=0\)

18 tháng 12 2018

Hướng dẫn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)

Thay vào:\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-zx=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)

Tương tự thay vào mà quy đồng

17 tháng 8 2017

Câu a :

\(VT=\) \(\left(x-1\right)\left(x^2+x+1\right)=x^3-1^3=VP\)

Câu b :

\(VT=\)\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-y^4=VP\)

Tương tự bạn khai triển là ra nhé

17 tháng 8 2017

a) \(\left(x-1\right)\left(x^2+x+1\right)\)

=\(x^3+x^2+x-x^2-x-1=x^3-1\)

\(\RightarrowĐPCM\)

b)\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)

\(=x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+xy^3-y^4=x^4-y^4\)

NV
10 tháng 10 2020

a/

\(\Leftrightarrow\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(y^2-6y+9\right)-19=0\)

\(\Leftrightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2=19\)

Do 19 không thể phân tích thành tổng của 2 số chính phương nên pt vô nghiệm

b/

\(\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Do x; y nguyên dương nên \(\left(2x+2y\right)^2>0\Rightarrow VT>0\)

Pt vô nghiệm

NV
10 tháng 10 2020

c/

\(\Leftrightarrow\left(x^2+4y^2+25-4xy+10x-20y+25\right)+\left(y^2-2y+1\right)+\left|x+y+z\right|=0\)

\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)

Do x;y;z nguyên dương nên \(\left|x+y+z\right|>0\Rightarrow VT>0\)

Vậy pt vô nghiệm

d/

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

Do x;y;z nguyên dương nên vế phái luôn dương

Pt vô nghiệm