\(\frac{y+z+1}{x}=\frac{x+y+2}{y}=\frac{x+y-2}{z}=\frac{1}{x+y+z}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2019

Ta có

\(\frac{x}{y}=\frac{3}{2};5x=7z\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{x}{10}=\frac{2y}{28}\)

Ap dụng  tính chất DTSBN

\(\frac{x}{21}=\frac{2y}{28}=\frac{z}{10}=\frac{x-2y+z}{21-28+10}=\frac{32}{3}\)

\(\hept{\begin{cases}\frac{x}{21}=\frac{32}{3}\Rightarrow x=224\\\frac{y}{14}=\frac{32}{3}\Rightarrow x=\frac{448}{3}\\\frac{z}{10}=\frac{32}{3}\Rightarrow x=\frac{320}{3}\end{cases}}\)

Bạn kiểm tra lại đề xem có sai, còn nếu mik sai thì mn kiểm tra xem sai ở đâu với

11 tháng 10 2019

Bạn còn thiếu 1 câu b mà

31 tháng 7 2020

ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Rightarrow\frac{y+x}{z}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

\(\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

31 tháng 7 2020

a,Sử dụng tính chất của dãy tỉ số bằng nhau

 \(\frac{x+y+2020}{z}=\frac{y+z-2021}{x}=\frac{z+x+1}{y}=\frac{x+y+y+z+z+x}{x+y+z}=2\)

\(< =>\frac{2}{x+y+z}=2< =>x+y+z=1\)

28 tháng 6 2019

a)Theo đề bài và t/c dãy tỉ số bằng nhau suy ra:

\(\frac{x}{x+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)(1)

Mặt khác \(\frac{x}{x+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\) .

Do đó \(x+y+z=\frac{1}{2}\Rightarrow x+y=\frac{1}{2}-z;...\text{tương tự mấy cái kia}\)

Suy ra \(\frac{x}{z+y+1}=\frac{1}{2}\Leftrightarrow\frac{x}{\frac{1}{2}-x+1}=\frac{1}{2}\Leftrightarrow\frac{2x}{3-2x}=\frac{1}{2}\)

\(\Leftrightarrow4x=3-2x\Leftrightarrow x=\frac{1}{2}\) .Tương tự với hai phân thức kia ta được: \(x=y=z=\frac{1}{2}\)

11 tháng 6 2017

Áp dụng TCDTS BN ta có :

\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=\frac{x+y+z}{\left(y+z+1\right)+\left(z+x+1\right)+\left(x+y-2\right)}\)

\(=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

\(\Rightarrow x+y+z=\frac{1}{2};y+z+1=2x;z+x+1=2y;x+y-2=2z\)

\(\Rightarrow\hept{\begin{cases}x+y+z+1=3x\\x+y+z+1=3y\\x+y+z-2=3z\end{cases}\Rightarrow\hept{\begin{cases}\frac{1}{2}+1=3x\\\frac{1}{2}+1=3y\\\frac{1}{2}-2=3z\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}}\)

11 tháng 6 2017

Xét x+y+z=0=>x=0(y+z+1)=0

                       y=0(z+x+1)=0

                       z=0(x+y-2)=0

Xét x+y+z khác 0,theo tính chất dãy tỉ số bằng nhau ta có:x/(y+z+1)=y/(z+x+1)=z/(x+y-2)=x+y+z/(2x+2y+2z)=1/2

=>2x=x+z+1=1/2-x+1=>x=1/2

    2y=z+x+1=1/2-y+1=>y=1/2

   2z=x+y-2=1/2-z-2=>z=-1/2

13 tháng 1 2017

 x = 5

y = 7

z = 14

3 tháng 2 2017

x;y;z có 2 giá trị: \(x=\frac{1}{2};y=\frac{1}{2};z=\frac{-1}{2}\) và \(x=0;y=0;z=0\)

20 tháng 8 2016

a)  \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)

\(\Rightarrow x+y+z=\frac{1}{2}\)(do 1/(x+y+z)=2)

\(\Rightarrow y+z=\frac{1}{2}-x;z+x=\frac{1}{2}-y;x+y=\frac{1}{2}-z\)

Thay vào lần lượt ta có:

\(\frac{\frac{1}{2}-x+1}{x}=2\)\(\Rightarrow x=\frac{1}{2}\)

\(\frac{\frac{1}{2}-y+2}{y}=2\)\(\Rightarrow y=\frac{5}{6}\)

\(\frac{\frac{1}{2}-z-3}{z}=2\)\(\Rightarrow z=-\frac{5}{6}\)

13 tháng 8 2017

ta co \(\frac{x+z+2}{y}\)=\(\frac{y+z+1}{x}\)=\(\frac{x+y-3}{z}\)=\(\frac{x+z+2+y+z+1+x+y-3}{x+y+z}\)

=\(\frac{2\left(x+y+z\right)}{x+y+z}\)=\(\frac{1}{x+y+z}\)=>\(x+y+z\)=\(\frac{1}{2}\)

=>\(\frac{x+z+2}{y}\)=\(\frac{1}{\frac{1}{2}}\)=2 =>\(\frac{x+z+2}{y}\)+\(1\)=\(3\)

=>\(\frac{x+y+z+2}{y}\)=\(3\)=>\(\frac{5}{\frac{2}{y}}\)=\(3\) =>\(y\)=\(\frac{5}{6}\)

tinh x ,z cung tuong tu nhu vay

14 tháng 8 2017

ê hoàn ơi mày là thằng gà, hồi trc mày còn bảo tao cách làm vậy o tao voi nhe thang hoan kia

mà bây giờ mày quên là sao, ngu ko tả nổi, mà mày k ch

22 tháng 7 2018

Điều kiện x,y.z khác 0 ( hiển nhiên x+y+z khác 0)

theo tính chất tỷ lệ thức

(y+z+1)/x=(x+z+2)/y=(x+y-3)/z=(y+z+1+x+z+2+x+y-3)/(x+y+z)=2(x+y+z)/(x+y+z)

=2

\(\Rightarrow\)1/(x+y+z)=2

\(\Leftrightarrow\)x+y+z=1/2\(\Leftrightarrow\)y+z=.1/2-x(1)

.(y+z+1)/x=2\(\Leftrightarrow\)y+z+1=2x

kết hợp với (1) \(\Rightarrow\)1/2-x+1=2x

\(\Leftrightarrow\)x=1/2\(\Rightarrow\)y+z=0\(\Leftrightarrow\)y=-z

có (x+y-3)/z=2

\(\Leftrightarrow\)x+y-3=2z

\(\Leftrightarrow\)y-2z=5/2

do y=-z=\(\Rightarrow\)-3z=5/2\(\Leftrightarrow\)z=-5/6

y=5/6

Vậy nghiệm tìm được:(x,y,z) =(1/2,5/6,-5/6)

5 tháng 7 2017

- Vì \(\frac{x}{5}=\frac{y}{3}\)=) \(3x=5y\)=) \(x=\frac{5y}{3}\)
=) \(x^2-y^2=4\)=) \(\left(\frac{5y}{3}\right)^2-y^2=4\)
=) \(\frac{25y^2}{9}-y^2=4\)=) \(\frac{25y^2}{9}-\frac{9y^2}{9}=\frac{36}{9}\)
=) \(25y^2-9y^2=36\)=) \(16y^2=36\)=) \(y^2=\frac{36}{16}=\frac{9}{4}\frac{3^2}{2^2}\)=) \(y=\frac{3}{2}\)
=) \(x=\frac{5.\frac{3}{2}}{3}=\frac{\frac{15}{2}}{3}=\frac{5}{2}\)

5 tháng 7 2017

a) Đặt x/5 = y/3 = k => x = 5k ; y = 3k

Ta có: x2 - y2 = 4

=> (5k)2 - (3k)2 = 4

=> 25k2 - 9k2 = 4

=> 16k2 = 4

=> k2 = 1/4

=> k = ±1/2

Với k = 1/2 thì x = 5/2, y = 3/2

Với k = -1/2 thì x = -5/2, y = -3/2

b) Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+1+z+x+1+x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

=> x + y + z = 1/2 ; x/y+z+1 = 1/2 ; y/z+x+1 = 1/2 ; z/x+y-2 = 1/2

=> \(\hept{\begin{cases}y+z+1=2x\\z+x+1=2y\\x+y-2=2z\end{cases}}\Rightarrow\hept{\begin{cases}x+y+z+1=3x\\x+y+z+1=3y\\x+y+z-2=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{2}+1=3x\\\frac{1}{2}+1=3y\\\frac{1}{2}-2=3z\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)