Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
\(\Rightarrow\frac{1+3y}{12}=\frac{\left(1+5y\right)-\left(1+7y\right)}{5x-4x}\)
\(\Rightarrow\frac{1+3y}{12}=\frac{-2y}{x}\)
\(\Rightarrow\frac{1+3y}{12}=\frac{-10y}{5x}\)
\(\Rightarrow\frac{1+5y}{5x}=-\frac{10y}{5x}\)
\(\Rightarrow1+5y=-10y\)
\(\Rightarrow-15y=1\)
\(\Rightarrow y=\frac{1}{-15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+7y-1-5y}{4x-5x}=\frac{2y}{-x}=\frac{1+5y-1-3y}{5x-12}=\frac{2y}{5x-12}\)
=>\(\frac{2y}{-x}=\frac{2y}{5x-12}\) với y=0 thay vào không thỏa mãn
Nếu y khác 0
=>-x=5x-12
=>x=2. Thay x=2 vào trên ta được:
\(\frac{1+3y}{12}=\frac{2y}{-2}=-y=>1+3y=>1=-15y=>y=\frac{-1}{15}\)
Vậy x=2,y=\(\frac{-1}{15}\) thỏa mãn đề bài
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{\left(1+5y\right)-\left(1+3y\right)}{5x-12}=\frac{\left(1+7y\right)-\left(1+5y\right)}{4x-5x}\)
\(\Rightarrow\frac{2y}{5x-12}=\frac{2y}{-x}\)
\(\Rightarrow5x-12=-x\)
\(\Rightarrow5x+x=12\)
\(\Rightarrow6x=12\)
\(\Rightarrow x=2\)
Thay x = 2 vào đẳng thức \(\frac{1+3y}{12}=\frac{1+5y}{5x}\), ta được :
\(\frac{1+3y}{12}=\frac{1+5y}{10}\)
\(\left(1+3y\right).10=12.\left(1+5y\right)\)
\(10+30y=12+60y\)
\(-2=30y\)
\(y=\frac{-1}{15}\)
Vậy x = 2 ; \(y=\frac{-1}{15}\)
\(\frac{1+3y}{12}\)=\(\frac{1+5y}{5x}\)=\(\frac{1+7y}{4x}\)
Ta có:\(\frac{1+5y}{5x}\)=\(\frac{1+7y}{4x}\)=> \(\frac{1+5y}{5}\)=\(\frac{1+7y}{4}\)=> 4(1+5y)=5(1+7y)
=> 4+20y=5+35y
=> 15y=-1
=> y=\(\frac{-1}{15}\)
ta thay y=\(\frac{-1}{15}\) vào biểu thức sau ta có:
\(\frac{1+3y}{12}\)=\(\frac{1+5y}{5x}\)=> \(\frac{1+3.\frac{-1}{15}}{12}\)=\(\frac{1+5.\frac{-1}{15}}{5x}\)
=> \(\frac{1}{15}\)=\(\frac{\frac{2}{3}}{5x}\)
=> 5x=15.\(\frac{2}{3}\)=> 5x=10=> x=2
Bài 1 : Sửa đề :
Tìm x,y,z
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z(1)\)
Ta có : \(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z(1)\)
Áp dụng tính chất bằng nhau của tỉ lệ thức ta được :
\(\frac{x+y+z}{2\left[x+y+z\right]}=x+y+z(2)\)
Nếu x + y + z = 0 thì từ 1 suy ra : x = 0 , y = 0 , z = 0
Nếu x + y + z \(\ne\)0 thì từ 2 suy ra \(\frac{1}{2}=x+y+z\), khi đó 1 trở thành :
\(\frac{x}{\frac{1}{2}-x+1}=\frac{y}{\frac{1}{2}-y+1}=\frac{z}{\frac{1}{2}-z-2}=\frac{1}{2}\)
Do đó : \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-\frac{3}{2}-z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)
Vậy có hai đáp số : \(\left[0,0,0\right]\)và \(\left[\frac{1}{2};\frac{1}{2};-\frac{1}{2}\right]\)
Bài 2 : Từ \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
=> \(\frac{1+4y}{24}=\frac{1+2y+1+6y}{18+6x}\)
=> \(\frac{1+4y}{24}=\frac{2+8y}{2\left[9+3x\right]}\)
=> 9 + 3x = 24 => 3x = 15 => x = 5,y tự tìm
Tìm nốt bài cuối nhé
a) Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Leftrightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Khi đó : \(\left(3k\right)^2+2.\left(4k\right)^2+4.\left(5k\right)^2=141\)
\(\Leftrightarrow141k^2=141\)
\(\Leftrightarrow k^2=1\)
\(\Leftrightarrow k=\pm1\)
TH1 \(\hept{\begin{cases}x=3\\y=4\\z=5\end{cases}}\)
TH2 \(\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)
Vậy.....
a)
Theo đề bài ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(x^2+2y^2+4z^2=141\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x^2}{3^2}=\frac{2y^2}{2.4^2}=\frac{4z^2}{4.5^2}=\frac{x^2+2y^2+4z^2}{9+32+100}=\frac{141}{141}=1\)
\(\frac{x}{3}=1\Rightarrow x=3.1=3\)
\(\frac{y}{4}=1\Rightarrow y=4.1=4\)
\(\frac{z}{5}=1\Rightarrow z=5.1=5\)
Vậy x = 3
y=4
z=5
a )
Ta có :
\(\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
\(\Rightarrow\frac{4\left(1+5y\right)}{20x}=\frac{5\left(1+7y\right)}{20x}\)
\(\Rightarrow\frac{4+20y}{20x}=\frac{5+35y}{20x}\)
\(\Rightarrow4+20y=5+35y\)
\(\Rightarrow35y-20y=4-5\)
\(\Rightarrow15y=4-5\)
\(\Rightarrow15y=-1\)
\(\Rightarrow y=-\frac{1}{15}\)
Lại có :
\(\frac{1+3y}{12}=\frac{1+5y}{5x}\)
\(\Rightarrow\frac{1+3.-\frac{1}{15}}{12}=\frac{1+5.-\frac{1}{15}}{5x}\)
\(\Rightarrow\frac{1-\frac{1}{5}}{12}=\frac{1-\frac{1}{3}}{5x}\)
\(\Rightarrow\frac{4}{5}:12=\frac{4}{3}:5x\)
\(\Rightarrow\frac{1}{15}=\frac{4}{3}:5x\)
\(\Rightarrow5x=\frac{4}{3}:\frac{1}{15}\)
\(\Rightarrow5x=20\)
\(\Rightarrow x=4\)
Vậy \(x=4;y=-\frac{1}{15}\)
a) Xét \(\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
\(\Rightarrow\frac{4x\left(1+5y\right)}{20x}=\frac{5\left(1+7y\right)}{20x}\)
\(\Rightarrow4x\left(1+5y\right)=5\left(1+7y\right)\)
\(\Rightarrow4+20y=5+35y\)
\(\Rightarrow35y-20y=4-5\)
\(\Rightarrow15y=-1\)
\(\Rightarrow y=\frac{-1}{15}\)
Xét \(\frac{1+3y}{12}=\frac{1+5y}{5x}\)
\(\Rightarrow\frac{1+3.\frac{-1}{15}}{12}=\frac{1+5.\frac{-1}{15}}{5x}\)
\(\Rightarrow\frac{1+\frac{-1}{5}}{12}=\frac{1+\frac{-1}{3}}{5x}\)
\(\Rightarrow\frac{\frac{4}{5}}{12}=\frac{\frac{2}{3}}{5x}\)
\(\Rightarrow\frac{4}{5}:12=\frac{2}{3}:5x\)
\(\Rightarrow\frac{1}{15}=\frac{2}{3}:5x\)
\(\Rightarrow5x=\frac{2}{3}:\frac{1}{15}\)
\(\Rightarrow5x=\frac{30}{3}\)
\(\Rightarrow x=\frac{30}{3}:5\)
\(\Rightarrow x=\frac{30}{3}.\frac{1}{5}\)
\(\Rightarrow x=2\)
Vậy x = 2 ; y = \(\frac{-1}{15}\)
1/ Ta có xy=-6
Với x=-6 => y=1
x=-3 => y=2
x= -2 => y=3
x=-1 => y=6
2/ Ta có x=y+4
Thay x=y+4 vào bt, ta được
<=> y+4-3/y-2 =3/2
<=> y+1/y-2=3/2
<=> 2(y+1)=3(y-2)
<=> 2y +2 = 3y - 6
<=> 3y - 2y= 2+ 6
<=> y= 8 <=> x= 12
3/ -4/8 = x/-10 <=> x= (-4)*(-10)/8=5
-4/8 = -7/y <=> y=(-7)*8/(-4) =14
-4/8 = z/-24 <=> z= (-4)*(-24)/8=12