K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2023

\(\dfrac{x}{3}=\dfrac{y}{4}\Leftrightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}\)

\(\dfrac{z}{5}=\dfrac{z^2}{25}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{x^2+y^2}{9+16}=\dfrac{x^2+y^2}{25}=\dfrac{225}{25}=9\)

\(\Rightarrow x=\sqrt{9\cdot9}=9\)

\(\Rightarrow y=\sqrt{9\cdot16}=12\)

\(\Rightarrow z=\sqrt{9\cdot25}=15\)

25 tháng 8 2023

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)

\(\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{225}{25}=9\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=9.9=81\\y^2=16.9=144\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=9\\y=12\end{matrix}\right.\)

\(\Rightarrow z=\dfrac{9}{3}.5=15\)

Vậy \(\left\{{}\begin{matrix}x=9\\y=12\\z=15\end{matrix}\right.\) thỏa đề bài

28 tháng 8 2023

a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{4-9}=\dfrac{-16}{-5}=\dfrac{16}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=4.\dfrac{16}{5}\\y^2=9.\dfrac{16}{5}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\pm\left(2.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{8\sqrt[]{5}}{5}\\y=\pm\left(3.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{12\sqrt[]{5}}{5}\end{matrix}\right.\)

\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow z=\dfrac{5}{4}y=\dfrac{5}{4}.\left(\pm\dfrac{12\sqrt[]{5}}{5}\right)=\pm3\sqrt[]{5}\)

b) \(\left|2x+3\right|=x+2\)

\(\Rightarrow\left[{}\begin{matrix}2x+3=x+2\\2x+3=-x-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-\dfrac{5}{3}\end{matrix}\right.\)

28 tháng 8 2023

Đính chính

Dòng cuối \(3x=-\dfrac{5}{3}\rightarrow x=-\dfrac{5}{3}\)

2 tháng 9 2016

\(gt< =>\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}-\left(\frac{x^2+y^2+z^2}{5}\right)=0\)

\(< =>\left(\frac{x^2}{2}-\frac{x^2}{5}\right)+\left(\frac{y^2}{3}-\frac{y^2}{5}\right)+\left(\frac{z^2}{4}-\frac{z^2}{5}\right)=0\)

\(< =>\frac{3x^2}{10}+\frac{2y^2}{10}+\frac{z^2}{20}=0\)

tổng 3 số không âm <=> chúng đều=0

<=>x=y=z=0

Vậy x=y=z=0

30 tháng 8 2021

thêm x2+y2+z2=1 nha

thêm x2 + y+ z= 1 nha

      HT nha vinh

NV
19 tháng 12 2020

\(\Leftrightarrow\dfrac{x^2}{2}-\dfrac{x^2}{5}+\dfrac{y^2}{3}-\dfrac{y^2}{5}+\dfrac{z^2}{4}-\dfrac{z^2}{5}=0\)

\(\Leftrightarrow\dfrac{3}{10}x^2+\dfrac{2}{15}y^2+\dfrac{1}{20}z^2=0\)

\(\Leftrightarrow x=y=z=0\)

18 tháng 10 2017

\(pt\Leftrightarrow\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}-\frac{x^2+y^2+z^2}{5}=0\)

\(\Leftrightarrow\left(\frac{x^2}{2}-\frac{x^2}{5}\right)+\left(\frac{y^2}{3}-\frac{y^2}{5}\right)+\left(\frac{z^2}{4}-\frac{z^2}{5}\right)=0\)

\(\Leftrightarrow\frac{3}{10}x^2+\frac{2}{15}y^2+\frac{1}{20}z^2=0\)

Ta thấy \(VT\ge0\forall x;y;z\) nên để dấu "=" xảy ra \(\Leftrightarrow x=y=z=0\)

1 tháng 11 2015

a\(\left(x-3\right)^2-\left(x+2\right)^2-5\left(\frac{1}{5}-7\right)=-30\)

=>(x-3-x-2)(x-3+x+2)-x+35=-30

=>-5(2x-1)-x+35=-30

=>-10x+5-x+35=-30

=>-11x+40=-30

=>-11x=-70 =>x=70/11

d)\(\left(x+3\right)^2-\left(x+5\right)\left(x-5\right)=2\)

\(=>\left(x+3\right)^2-x^2+25=2\)

\(=>\left(z+3-z\right)\left(z+3+z\right)+25=2\)

\(=>3\left(2z+3\right)+25-2=0\)

\(=>6z+9+23=0\)

\(=>6x+32=0=>6x=-32=>x=-\frac{16}{3}\)

e)\(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-3\right)=36\)

\(=>3\left(x^2+4x+4\right)+\left(4x^2-4x+1\right)-7\left(x^2-9\right)=36\)

\(=>3x^2+12x+12+4x^2-4x+1-7x^2+63\)

\(=>8x+76=36=>8x=36-76=>x=-40\div8=-5\)

g)\(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)

\(=>x^3-1-x\left(x^2-4\right)=5=>x^3-1-x^3+4x=5\)

\(=>4x-1=5=>4x=6=>x=\frac{3}{2}\)

 

2 tháng 1 2018

            \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)         

 \(\Leftrightarrow\)\(\frac{2x}{3}.\frac{1}{12}\)\(=\)\(\frac{3y}{4}.\frac{1}{12}\)\(=\)\(\frac{4z}{5}.\frac{1}{12}\)

\(\Leftrightarrow\)\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)

Ap dụng tính chất dãy tỉ số bằng nhau ta có:

     \(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y-z}{18+16-15}=\frac{38}{19}=2\)

suy ra:   \(\hept{\begin{cases}\frac{x}{18}=2\\\frac{y}{16}=2\\\frac{z}{15}=2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=36\\y=32\\z=30\end{cases}}\)

Vậy     \(x=36;\)  \(y=32;\)    \(z=30\)