K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2015

a) Ta có : x/2=y/3; y/5=z/4 => 

             = x/10=y/15 ; y/15= z/12

           => x/10= y/15=z/12

Ap dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/10=y/15=z/12 = x-y+z / 10-15+12 = (-49)/7 = (-7)

+) Vì x/10 =(-7) => x=(-70)

+) Vì y/15 =(-7) => y=(-105)

+) Vì z/12 =(-7) => z=(-84)

NHẤN ĐÚNG NHA BẠN !

 

b)

Ta có: x/3=y/4 ; y/4=z/7 => x/3 = y/4=z/7

Ta có: x/3=y/4=z/7 = 2.x/2.3 =3.y/3.4 = z/7

                            = 2.x/6 = 3.y/12 = z/7

Ap dụng tính chất của dãy tỉ số bằng nhau, ta có:

2.x/6 = 3.y/12 = z/7 = 2.x+3.y-z/ 6+12-7

                              =186/11

Từ đó tính được x,y,z nha

NHẤN ĐÚNG NHA BẠN 

30 tháng 9 2017

bay gio o so thu nguoi ta cho hut thuoc roi

26 tháng 10 2015

avt246800_60by60.jpgavt246800_60by60.jpgavt300782_60by60.jpgavt135637_60by60.jpgavt331174_60by60.jpgs3.jpgavt297750_60by60.jpgavt202099_60by60.jpgavt224463_60by60.jpgavt339307_60by60.jpg khó

avt344745_60by60.jpgavt341678_60by60.jpg

17 tháng 8 2019

hihaChúc bạn học tốt!eoeo

17 tháng 8 2019

Lời giải:

a, Ta có: \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\). Mà theo đề bài: 5x + y - 2z = 28

=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{5x}{50}=\frac{x}{10}=2\Leftrightarrow x=20\\\frac{y}{6}=2\Leftrightarrow y=12\\\frac{2z}{42}=\frac{z}{21}=2\Leftrightarrow z=42\end{matrix}\right.\)(TMĐK)

Vậy: \(x=20;y=12;z=42\)

b, Ta có: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\) ; \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\). Mà theo đề bài: 2x+3y - z = 124

=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{2x}{30}=\frac{x}{15}=2\Leftrightarrow x=30\\\frac{3y}{60}=\frac{y}{20}=2\Leftrightarrow y=40\\\frac{z}{28}=2\Leftrightarrow z=56\end{matrix}\right.\)(TMĐK)

Vây:\(x=30;y=40;z=56\)

c, Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x.x}{2}=\frac{x.y}{3}\). Mà x.y = 54

\(\Rightarrow\frac{x.x}{2}=\frac{x.y}{3}=\frac{54}{3}=18\)

\(\Rightarrow\frac{x^2}{2}=18\Rightarrow x^2=36\Rightarrow x\in\left\{6;-6\right\}\)

Nếu \(x=6\Rightarrow\frac{6.y}{3}=18\Rightarrow6.y=54\Rightarrow y=9\)

Nếu \(x=-6\Rightarrow\frac{-6.y}{3}=18\Rightarrow-6.y=54\Rightarrow y=-9\)

Vậy: \(\left(x;y\right)\in\left\{\left(6;9\right),\left(-6;-9\right)\right\}\)

26 tháng 9 2015

x = -27

y = -21

x = - 9

tích nha !

22 tháng 9 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)=> \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)=> \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{4}=4\\\frac{y^2}{9}=4\\\frac{z^2}{16}=4\end{cases}}\)=> \(\hept{\begin{cases}x=\pm4\\y=\pm6\\z=\pm8\end{cases}}\)

24 tháng 9 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4\)

\(\Rightarrow\hept{\begin{cases}x^2=16\\y^2=36\\z^2=64\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x=\pm4\\y=\pm6\\z=\pm8\end{cases}}\)

22 tháng 10 2015

áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x^2-y^2+2z^2}{2^2-3^2+2.4^2}=\frac{108}{27}=4\)

vậy:

x/2=4 =>x=4.2=8

y/3=4 =>y=4.3=12

z/4=4 =>z=4.4=16

30 tháng 7 2015

    x/2=y/3=z/4 
=>y=3/2x và z=2x 
=> y^2=9/4x^2 và z^2=4x^2 
Thế vào x^2 – y^2 + 2z^2 = 108 
=> x^2 - 9/4x^2 + 2.4x^2=108 
<=> 27/4 . x^2 = 108 
<=> x^2 = 16 
<=> x=4 
=> y= 3/2 x = 3/2 . 4 =6 và z=2x=2.4=8

6 tháng 10 2017

17.2 mu 4-15.2 mu 4