Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta co : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\) va x.y.z=20
Dat : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
x=12k3
y=9k3
z=5k3
x.y.z=540k3
20 = 540k3
k3 =27
k = +-3
Voi : \(k=3\Rightarrow x=36;y=27;z=15\)
Voi :\(k=-3\Rightarrow x=-36;y=-27;z=-15\)
a) Đặt \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
=>x=12k;y=9k;z=5k
Thay x=12k;y=9k;z=5k vào biểu thức x.y.z=20 ta được
(12k)(9k)(5k)=20
12k.9k.5k=20
540.\(k^3\)=20
k\(^3\)=\(\frac{1}{27}\)
=>k=\(\frac{1}{3}\)
=>\(x=\frac{1}{3}.12=4\)
\(y=\frac{1}{3}.9=3\)
\(z=\frac{1}{3}.5=\frac{5}{3}\)
Vậy x=4;y=3;z=\(\frac{5}{3}\)
b)Ta có:
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{2}z\)=>\(\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\)=>\(\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)=>\(\frac{6x}{198}=\frac{9y}{36}=\frac{18z}{90}\)
=>\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
=>\(\frac{x}{33}=5\)=>\(x=5.33=165\)
\(\frac{y}{4}=5\)=>\(y=5.4=20\)
\(\frac{z}{5}=5\)=>\(z=5.5=25\)
Vậy x=165;y=20;z=25
Giải :
Đặt \(\frac{x}{12}=\frac{y}{15}=\frac{z}{5}=a\)
\(\Rightarrow x=12.a\)
\(y=15.a\)
\(z=5.a\)
Thay vào x.y.z = 20
12.a.15.a.5.a = 20
( 12.15.5 ) . ( a.a.a ) = 20
900. a3 = 20
a3 = 20 ÷ 900
a3 = \(\frac{1}{45}\)
Đến đây bí ^^
Cbht
\(\frac{x}{12}=\frac{y}{15}=\frac{z}{5}=\frac{x.y.z}{12.15.5}=\frac{20}{900}=\frac{1}{45}\)
\(\frac{x}{12}\)=\(\frac{1}{45}\)=> x=\(\frac{1}{45}\).12=\(\frac{4}{15}\)
\(\frac{y}{15}=\frac{1}{45}=>y=\frac{1}{45}.15=\frac{1}{3}\)
\(\frac{z}{5}=\frac{1}{45}\)=> z = \(\frac{1}{45}.5=\frac{1}{9}\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-9=15k\\y-12=20k\\z-24=40k\end{cases}\Rightarrow\left[\begin{array}{nghiempt}x=15k+9\\y=20k+12\\z=40k+24\end{array}\right.}\)
ta có:
x.y=1200\(\frac{15}{x-9}=\frac{20}{y-12}=\frac{40}{z-24}\Rightarrow\frac{x-9}{15}=\frac{y-12}{20}=\frac{z-24}{40}=k\)
=> (15k+9)(20k+12)=1200
=> 3.4(5k+3)(5k+3)=1200
=> (5k+3)2=100
=> 5k+3=\(\pm\)10
=> \(\left[\begin{array}{nghiempt}5k+3=10\\5k+3=-10\end{cases}\Rightarrow\left[\begin{array}{nghiempt}5k=7\\5k=-13\end{cases}\Rightarrow}\left[\begin{array}{nghiempt}k=\frac{7}{5}\\k=-\frac{13}{5}\end{array}\right.}\)
* với k=7/5
x=7/5x15+9=30
y=7/5x20+12=40
z=7/5x40+24=80
* với k=-13/5
x=-13/5x15+9=-30
y=-13/5x20+12=-40
z=-13/5x40+24=-80
b)
\(\frac{40}{x-30}=\frac{20}{y-50}=\frac{28}{z-21}\Rightarrow\frac{x-30}{40}=\frac{y-50}{20}=\frac{z-21}{28}k=\)
=>\(\left[\begin{array}{nghiempt}x-30=40k\\y-50=20k\\z-21=28k\end{cases}\Rightarrow\left[\begin{array}{nghiempt}x=40k+30\\y=20k+50\\z=28k+21\end{array}\right.}\)
ta có:
x.y.z=22400
=> (40k+30)(20k+50)(28k+21)=22400
c) 15x=-10y=6z
\(\Rightarrow\frac{15x}{30}=\frac{-10y}{30}=\frac{6z}{30}\Rightarrow\frac{x}{2}=-\frac{y}{3}=\frac{z}{5}=k\)
=> \(\left[\begin{array}{nghiempt}x=2k\\y=-3k\\z=5k\end{array}\right.\)
ta có:
x.y.z=30000
=> 2k.(-3k).5k=30000
=> k3=1000
=> k=10
ta có: x=10x2=20
y=10.(-3)=-30
z=10.5=50
Câu thứ 2:
Đặt x/12 = y/9 = z/5 =k.
=> x= 12k
y= 9k
z=5k
=> xyz = 12k * 9k * 5k = 20
=> 540 * k^3 = 20
k^3 = 1/27
k= 1/3
=> x= 12k = 12* 1/3 = 4
y= 9k = 9 * 1/3 = 3
z= 5k = 5* 1/3 = 5/3
Vậy x=
y=
z=
a) Aps dụng tính chất các dãy tỉ số bằng nhau, ta có:
x/4 =y/3 = z/9 = 3y/9 = 4z/36 = (x-3y+4z)/(4-9+36)= 62/31 = 2
=> x=2.4=8
y=2.3=6
z=2.9=18
a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)
ADTCCDTSBN, ta có:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\Rightarrow x=2.4=8\)
\(y=2.3=6\)
\(z=2.9=18\)
b) Đề có nhầm lẫn j k nhỉ =.=
c) \(5x=8y=20z\Leftrightarrow\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}\)
ADTCCDTSBN, ta có:
\(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{5}+\frac{1}{8}+\frac{1}{20}}=-\frac{15}{\frac{3}{8}}=-40\)
\(\Rightarrow x=-40:5=-8\)
\(y=-40:8=-5\)
\(z=-40:20=-2\)
a, 5x = 8y => \(\frac{x}{8}=\frac{y}{5}\)
8y = 20z => 2y = 5z => \(\frac{y}{5}=\frac{z}{2}\)
=> \(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}=\frac{x-y-z}{8-5-2}=\frac{3}{1}=3\)
=> x = 24,y = 15,z = 6
b, \(\frac{6}{11}x=\frac{9}{2}y\)=> \(\frac{12x}{22}=\frac{99y}{22}\)=> 12x = 99y => 4x = 33y => \(\frac{x}{33}=\frac{y}{4}\)
\(\frac{9}{2}y=\frac{18}{5}z\)=> \(\frac{45y}{10}=\frac{36z}{10}\)=> 45y = 36z => 5y = 4z => \(\frac{y}{4}=\frac{z}{5}\)
=> \(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{120}{-24}=-5\)
=> x = -165 , y = -20 , z = -25
c, Đặt : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)=> x = 12k , y = 9k , z = 5k
=> xyz = 12k . 9k . 5k
=> xyz = 540k3
=> 540k3 =20
=> k3 = 20/540
=> k3 = 1/27
=> k = 1/3
Do đó : x= 4 , y = 3 , z = 5/3
Đặt \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\Rightarrow x=12k;y=9k;z=5k\)
\(xyz=12k.9k.5k=540.k^3=20\Rightarrow k^3=\frac{1}{27}\Rightarrow k=\frac{1}{3}\)
\(\Rightarrow x=12.\frac{1}{3}4;y=9.\frac{1}{3}=3;z=5.\frac{1}{3}=\frac{5}{3}\)
Tick đi Phạm Tuấn Tài
x= 4
y= 3
z= \(\frac{5}{3}\)