Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Giải:
Ta có: \(\frac{x}{y}=\frac{3}{2}\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(5x=7z\Rightarrow\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{15}=\frac{2y}{28}=\frac{x-2y+z}{21-28+15}=\frac{32}{8}=4\)
+) \(\frac{x}{21}=4\Rightarrow x=84\)
+) \(\frac{y}{14}=4\Rightarrow y=56\)
+) \(\frac{z}{15}=4\Rightarrow z=60\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(84;56;60\right)\)
Bài 2:
Giải:
Ta có: \(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}\Rightarrow\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}=\frac{7x}{7z}=\frac{5y}{5t}=\frac{3x}{3z}=\frac{7y}{7t}=\frac{x}{z}=\frac{y}{t}=\frac{x}{z}=\frac{y}{t}\)
\(\frac{x}{z}=\frac{y}{t}\Rightarrow\frac{x}{y}=\frac{z}{t}\)
\(\Rightarrowđpcm\)
BÀI 1 LÀ áp dụng tính chất của dãy tỉ sỗ = nhau
BT2 là cũng vậy r ss
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k\)
\(y=3k\)
\(z=5k\)
Thay \(x=2k;y=3k;z=5k\) vào \(x.y.z=810\) ta được:
\(2k.3k.5k=810\)
\(30k^3=810\)
\(k^3=27\)
\(k^3=3^3\)
\(\Rightarrow k=3\)
\(\Rightarrow x=2k=2.3=6\)
\(y=3k=3.3=9\)
\(z=5k=5.3=15\)
Vậy \(x=6;y=9;z=15\)
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
=> \(x=2k+1\)
\(y=3k+2\)
\(z=4k+3\)
Thay \(x=2k+1;y=3k+2;z=4k+3\) vào \(2x+3y-z=50\) ta được:
\(2\left(2k+1\right)+3\left(3k+2\right)-4\left(4k+3\right)=50\)
\(4k+2+9k+6-4k-3=50\)
\(9k+5=50\)
\(9k=45\)
\(k=5\)
\(\Rightarrow x=2k+1=2.5+1=11\)
\(y=3k+2=3.5+2=17\)
\(z=4k+3=4.5+3=23\)
Vậy \(x=11;y=17;z=23\)
* Với \(a=1\) ta thấy BĐT đúng.
* Ta xét khi \(a>1\)
Hàm nghi số \(y=\) \(y=\frac{1}{a^1}=\left(\frac{1}{a}\right)^1\) nghịch biến với \(\forall t\in R,\) khi \(a>1\).
Khi đó ta có
Ta có: \(\left(x-y\right)\left(\frac{1}{a^x}-\frac{1}{a^y}\right)\le0,\forall x,y\in R\Rightarrow\frac{x}{a^x}+\frac{y}{a^y}\le\frac{x}{a^y}+\frac{y}{a^x}\) (1)
Chứng minh tương tự \(\frac{y}{a^y}+\frac{z}{a^z}\le\frac{z}{a^y}+\frac{y}{a^z}\) (2) \(\frac{z}{a^z}+\frac{x}{a^x}\le\frac{x}{a^z}+\frac{z}{a^x}\) (3)
Cộng vế với vế (1), (2) và (3) ta được \(2\left(\frac{x}{a^x}+\frac{y}{a^y}+\frac{z}{a^z}\right)\le\frac{y+z}{a^x}+\frac{z+x}{a^y}+\frac{x+y}{a^z}\) (4)
Cộng 2 vế của (4) với biểu thức \(\frac{x}{a^x}+\frac{y}{a^y}+\frac{z}{a^z}\) ta được
\(3\left(\frac{x}{a^x}+\frac{y}{a^y}+\frac{z}{a^z}\right)\le\frac{x+y+z}{a^x}+\frac{x+y+z}{a^y}+\frac{x+y+z}{a^z}=\left(x+y+z\right)\left(\frac{1}{a^x}+\frac{1}{a^y}+\frac{1}{a^z}\right)\)
Áp dụng tính chất của dãy ti số = nhau ta có:
\(\frac{x-y}{3}=\frac{x+y}{13}=\frac{\left(x+y\right)-\left(x-y\right)}{13-3}=\frac{2y}{10}=\frac{xy}{200}\) (*)
=> \(x=\frac{2y}{10}:\frac{y}{200}=\frac{2y}{10}.\frac{200}{y}\) (1)
- TH1: y = 0 => x = 0
- TH2: \(y\ne0\) từ (1) => x = 40
Thay vào (*) ta có: \(\frac{40-y}{3}=\frac{y}{5}\)
=> (40 - y).5 = 3y
=> 200 - 5y = 3y
=> 3y + 5y = 200
=> 8y = 200
=> y = 200 : 8 = 25
Vậy các cặp giá trị (x;y) thỏa mãn là: (0;0) ; (40;25)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
Theo đề bài ta có x = \(\frac{a}{m}\), y = \(\frac{b}{m}\)(a, b, m ∈ Z, b # 0)
Vì x < y nên ta a < b
Ta có: x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\); z = \(\frac{a+b}{2m}\)
Vì a < b \(\Rightarrow\) a + a < a + b \(\Rightarrow\) 2a < a + b
Vì 2a < a + b nên x < z (1)
Vì a < b \(\Rightarrow\) a + b < b + b \(\Rightarrow\) a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta \(\Rightarrow\) x < z < y
hihi bài này mình học ùi nhưng ko hỉu cho a+2016 bạn về xem lại sách y
\(\left(x+2\right)\left(x+\frac{2}{3}\right)>0\)
(+) \(\begin{cases}x+2>0\\x+\frac{2}{3}>0\end{cases}\)\(\Rightarrow\begin{cases}x>-2\\x>-\frac{2}{3}\end{cases}\)\(\Rightarrow x>-\frac{2}{3}\)
(+) \(\begin{cases}x+2< 0\\x+\frac{2}{3}< 0\end{cases}\)\(\Rightarrow\begin{cases}x< -2\\x< -\frac{2}{3}\end{cases}\)\(\Rightarrow x< -2\)
Vậy \(x>-\frac{2}{3}\) ; \(x< -2\)
a/ theo bài ra, ta có:
\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=x+y+z\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+1+z+x+1+x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=x+y+z\)
- nếu x+y+z = 0 => x = y= z = 0
- nếu x+y+z khác 0 => x+y+z = \(\frac{1}{2}\)
=> y + z = \(\frac{1}{2}\) - x
=> z + x = \(\frac{1}{2}\) - y
=> x + y = \(\frac{1}{2}\) - z
=> \(\frac{x}{\frac{1}{2}-x+1}=\frac{y}{\frac{1}{2}-y+1}=\frac{z}{\frac{1}{2}-z-2}=\frac{1}{2}\)
=> 2x = \(\frac{1}{2}\) - x + 1 => x = \(\frac{1}{2}\)
=> 2y = \(\frac{1}{2}-y+1\) => y = \(\frac{1}{2}\)
=> 2z = \(\frac{1}{2}-z-2\) => z = \(\frac{-1}{2}\)
vậy x = 0 hoặc 1/2
y = 0 hoặc 1/2
z = 0 hoặc -1/2
mk lm câu b bái 1 nha
Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\\=\frac{2x+3y-z-2-6+3}{9}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=\frac{45}{9}=5\)
Suy ra
x - 1 = 5 . 2 = 10
x = 10 + 1
→ x = 11
y - 2 = 3 . 5 = 15
y = 15 + 2
→ y = 17
z - 3 = 4 . 5 = 20
z = 20 + 3
→ z = 23
Ta có: \(\frac{15}{x-9}=\frac{20}{y-12}=\frac{40}{z-24}\)
\(\Rightarrow\frac{x-9}{15}=\frac{y-12}{20}=\frac{z-24}{40}\)
\(\Rightarrow\frac{x}{15}-\frac{9}{15}=\frac{y}{20}-\frac{12}{20}=\frac{z}{40}-\frac{24}{40}\)
\(=\frac{x}{15}-\frac{3}{5}=\frac{y}{20}-\frac{3}{5}=\frac{z}{40}-\frac{3}{5}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{40}\)
\(\Rightarrow\frac{x^2}{15^2}=\frac{y^2}{20^2}=\frac{z^2}{40^2}=\frac{xy}{15.20}=\frac{1200}{300}=4=2^2\)
\(\Rightarrow\begin{cases}x^2=2^2.15^2=30^2\\y^2=2^2.20^2=40^2\\z^2=2^2.40^2=80^2\end{cases}\)\(\Rightarrow\begin{cases}x\in\left\{30;-30\right\}\\y\in\left\{40;-40\right\}\\z\in\left\{80;-80\right\}\end{cases}\)
Vậy giá trị (x;y;z) tương ứng thỏa mãn là: (30;40;80) ; (-30;-40;-80)
soyeon_Tiểubàng giải thanks bn nhìu nhá!