Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ta có 4+x/7+y=4/7
<=>7x+28=28+4y
<=> 7x=4y
lại có x+y=22
=>4/7y+y=22
<=>11/7y=22 <=> y=14
<=> x= 4/7*14=8
vậy x=8, y=14
b) Từ x/3=y/4 va y/5=z/6-->x/15=y/20=z/24 (1)
(1) = 2x/30=3y/60=4z/96=(2x+3y+4z)/186 (2) (t/c dãy tỉ số bằng nhau)
Ta lại có
(1) = 3x/45=4y/80=5z/120=(3x+4y+5z)/245 (3)(t/c dãy tỉ số bằng nhau)
Từ (2)(3) ta có(2x+3y+4z)/186=(3x+4y+5z)/245
Vậy M = (2x+3y+4z)/(3x+4y+5z)=186/245
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Theo tính chất của dãy tỉ số bằng nhau, có:
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8x+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{y}{12}\\\dfrac{x}{6}=\dfrac{z}{12}\\\dfrac{y}{6}=\dfrac{z}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{x}{2}=\dfrac{z}{4}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)
Kết luận ...
a. Có \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}\) => \(\dfrac{x}{4}=\dfrac{3x}{9}=\dfrac{4z}{36}\) và x-3y+4z=62
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x}{4}=\dfrac{3y}{9}=\dfrac{4z}{36}\)= \(\dfrac{x-3y+4z}{4-9+36}=\dfrac{62}{31}=2\)
=> x=8
3y=18=>y=6
4z=72=>z=18
Vậy x=8 ; y=6 ; z=18
b, Ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{5z}{20}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{5z}{20}\\ =\dfrac{2x+3y-5z}{4+9-20}=\dfrac{-21}{-7}=3\\ \Rightarrow\left\{{}\begin{matrix}x=3\cdot2=6\\y=3\cdot3=9\\z=3\cdot4=12\end{matrix}\right.\\ vậy...\)
Câu c bạn làm tương tự nhé!
d, Ta có : \(\left|x+y-z\right|=95\Rightarrow\left[{}\begin{matrix}x+y-z=95\\x+y-z=-95\end{matrix}\right.\)
\(2x=3y=5z=\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}=\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(2x=3y=5z=\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}=\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\\ =\dfrac{x+y-z}{15+10-6}=\dfrac{x+y-z}{19}\\ \Rightarrow\left[{}\begin{matrix}x+y-z=95\\x+y-z=-95\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=15\cdot5=75\\y=10\cdot5=50\\z=6\cdot5=30\end{matrix}\right.\\\left\{{}\begin{matrix}x=-5\cdot15=-75\\y=-5\cdot10=-50\\z=-5\cdot6=-30\end{matrix}\right.\end{matrix}\right.\)
Vậy...
a) Ta có: 3x = 2y; 4x = 2z
⇒ \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{x}{2}=\dfrac{z}{4}\)
⇒ \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và x + y + z = 27
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{27}{9}=3\)
⇒ \(\dfrac{x}{2}=3\) ⇒ x = 6
\(\dfrac{y}{3}=3\) ⇒ y = 9
\(\dfrac{z}{4}=3\) ⇒ z = 12
Vậy x = 6 ; y = 9 ; z = 12
b) Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
⇒ \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)
⇒ \(\dfrac{2x^2}{8}=\dfrac{3y^2}{27}=\dfrac{5z^2}{80}\)
và 2x2 + 3y2 - 5z2 = -405
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x^2}{8}=\dfrac{3y^2}{27}=\dfrac{5z^2}{80}\)=\(\dfrac{2x^2+3y^2-5z^2}{8+27-80}=\dfrac{-405}{-45}=9\)
+) \(\dfrac{2x^2}{8}=9\) ⇒ 2x2 = 72 ⇒ x2 = 72 : 2
⇒ x2 = 36 ⇒ x = 6 hoặc x = -6
+) \(\dfrac{3y^2}{27}=9\) ⇒ 3y2 = 243 ⇒ y2 = 243 : 3
⇒ y2 = 81 ⇒ y = 9 hoặc y = -9
+) \(\dfrac{5z^2}{80}=9\) ⇒ 5z2 = 720 ⇒ z2 = 720 : 5
⇒ z2 = 144 ⇒ z = 12 hoặc z = -12
Vậy...................................( bạn tự vậy nhé )
c) Giống câu a ( bạn tự chép lại )
d) Mik ko bt lm
CÂU TRẢ LỜI RẤT HAY BẠN NÀO ĐANG CẦN THÌ THAM KHẢO NHÉ!!!!!!!!
3a)Vì A là số nguyên
=>\(3n+9⋮n-4=>3n-12+21⋮n-4=>3.\left(n-4\right)+21⋮n-4\)
Mà \(\text{3 . (n - 4)}⋮n-4\)
=>\(21⋮n-4=>n-4\inƯ\left(21\right)=\left\{-21;-7;-3;-1;1;3;7;21\right\}\)
(Vì n là số nguyên => n - 4 là 1 số nguyên)
=>\(n\in\left\{-17;-3;1;3;5;9;11;25\right\}\)
Ta có bảng sau:
n | -17 | -3 | 1 | 3 | 5 | 9 | 11 | 25 |
3n + 9 | -42 | 0 | 12 | 18 | 24 | 36 | 42 | 84 |
n - 4 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
\(A=\dfrac{3n+9}{n-4}\) | 2 | 0 | -4 | -18 | 24 | 12 | 6 | 4 |
Vậy.....
b)Vì B là số nguyên
=>\(2n-1⋮n+5=>2n+10-11⋮n+5=>2\left(n+5\right)-11⋮n+5\)
Mà \(\text{2 ( n + 5)}⋮n+5\)
=>\(11⋮n+5=>n+5\in\left\{-11;-1;1;11\right\}\)
(Vì n là số nguyên=> n + 5 là số nguyên)
=> \(n\in\left\{-16;-6;-4;6\right\}\)
Ta có bảng sau:
n | -16 | -6 | -4 | 6 |
2 n - 1 | -33 | -13 | -9 | 11 |
n + 5 | -11 | -1 | 1 | 11 |
\(B=\dfrac{2n-1}{n+5}\) | 3 | 13 | -9 |
1 |
Vậy.......
Ta có: \(\dfrac{x}{3}\)=\(\dfrac{y}{4}\) ; \(\dfrac{y}{5}\)=\(\dfrac{z}{6}\)
=>\(\dfrac{x}{15}\)=\(\dfrac{y}{20}\)=\(\dfrac{z}{24}\)=k
=>x=15k
y=20k
z=24k
Thế x=15k; y=20k; z=24k vào biểu thức A, ta có:
\(\dfrac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}\)=\(\dfrac{30k+60k+96k}{45k+60k+120k}\)=\(\dfrac{k.\left(30+60+96\right)}{k.\left(45+60+120\right)}\)=\(\dfrac{186}{225}\)=\(\dfrac{62}{75}\)
Đặt \(k=\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4b-4a-c}\)
Do đó: \(k=\dfrac{x}{a+2b+c}=\dfrac{2y}{4a+2b-2c}=\dfrac{z}{4b-4a-c}\)
\(k=\dfrac{2x}{2a+4b+2c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4b-4a-c}\)
\(k=\dfrac{4x}{4a+8b+4c}=\dfrac{4y}{8a+4b-4c}=\dfrac{z}{4b-4a-c}\)
Theo t/c dãy tỉ số bằng nhau, ta có:
\(k=\dfrac{x+2y-z}{a+2b+c+4a+2b-2c-4b+4a+c}=\dfrac{x+2y-z}{9a}\)
\(k=\dfrac{2x+y+z}{2a+4b+2c+2a+b-a+4b-4a-c}=\dfrac{2x+y+z}{9b}\)
\(k=\dfrac{4x-4y-z}{4a+8b+4c-8a-4b+4c-4b+4a+c}=\dfrac{4x-4y-z}{9c}\)
\(\Rightarrow\dfrac{x+2y-z}{9a}=\dfrac{2x+y+z}{9b}=\dfrac{4x-4y-z}{9c}\)
\(\Rightarrow\dfrac{x+2y-z}{a}=\dfrac{2x+y+z}{b}=\dfrac{4x-4y-z}{c}\)
\(\Rightarrow\dfrac{a}{x+2y-z}=\dfrac{b}{2x+y+z}=\dfrac{c}{4x-4y-z}\) => đpcm