Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=x^3+x^2y-xy^2-y^3+x^2-y^2+2x+2y+3\)
\(M=\left(x^3-y^3\right)+\left(x^2y-xy^2\right)+\left(x^2-y^2\right)+\left(2x+2y+2\right)+1\)
\(M=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(x-y\right)+\left(x-y\right)\left(x+y\right)+2\left(x+y+1\right)+1\)
\(M=\left(x-y\right)\left(x^2+xy+y^2+xy+x+y\right)+2.0+1\)
\(M=\left(x-y\right)\left[\left(x+y\right)^2+\left(x+y\right)\right]+1\)
\(M=\left(x-y\right)\left(x+y\right)\left(x+y+1\right)+1\)
\(M=\left(x-y\right)\left(x+y\right).0+1\)
\(M=1\)
Ở bài này mk áp dụng hằng đẳng thức (a3-b3)=(a-b)(a2+ab+b2) ,(a2-b2)=(a-b)(a+b);(a2+2ab+b2)=(a+b)2
ta có : x=2010
->x-1=2009
A(x)=x2010-(x-1).x2009 -(x-1).x2008 -...-(x-1).x+1
A(x)=x2010-x2010+x2009-x2009+x2008-...-x2+x+1
A(x)=x+1=2010+1=2011
a) ( x - 2/9 )3 = ( 2/3 ) 6
=> ( x - 2/9 )3 = (4/9 )3
=> x - 2/9 = 4/9
=> x = 4/9 - 2/9
=> x = 2/9
Thay x=1 y=3
a,A=1^2x3-3+1x3^2-3
A=9/2
Thay x=1 y=2
B=1^2x3^2+1x3+1^3+3^3
B=40
a/ Ta có: \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\left(1\right)\\x^2+y^2=52\left(2\right)\end{cases}}\).
Từ (1) => \(\frac{x^2}{4}=\frac{y^2}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có: \(\frac{x^2}{4}=\frac{y^2}{25}=\frac{x^2+y^2}{4+25}=\frac{52}{29}\)
=> \(\frac{x}{2}=\frac{52}{29}\)=> x = \(\frac{2.52}{29}\approx4\)
=> \(\frac{y}{5}=\frac{52}{29}\)=> y = \(\frac{5.52}{29}\approx9\)
Vậy \(x\approx4\)và \(y\approx9\).
b) (x+1)x+1-(x+1)x+3=0
(x+1)x+1 [(1+(x+1)x+2]=0
suy ra (x+1)x+1=0 hoặc 1+(x+1)x+2=0
x=-1 hoặc (x+1)x+2=-1
đến đó làm tiếp nhé bạn