Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1: a, |2 - x| + 2 = x
=> |2 - x| = x - 2
Dễ thấy (2 - x) và số đối của (x - 2)
=> |2 - x| = x - 2
=> 2 - x ≤ 0
=> x ≥ 2
b, Điều kiện: x + 7 ≥ 0 => x ≥ -7
Ta có: |x - 9| = x + 7
\(\Rightarrow\orbr{\begin{cases}x-9=x+7\\x-9=-x-7\end{cases}\Rightarrow}\orbr{\begin{cases}0x=16\left(loai\right)\\2x=2\end{cases}\Rightarrow x=1}\left(t/m\right)\)
Vì \(\hept{\begin{cases}\left|x+y-15\right|\ge0\forall x,y\\\left|xy-56\right|\ge0\forall x,y\end{cases}}\)
\(\Rightarrow\left|x+y-15\right|+\left|xy-56\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}x+y-15=0\\xy-56=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+y=15\\xy=56\end{cases}}\)
Đến đây lập pt bậc hai giải tiếp nha
bạn thử xệt trên google đi
chứ ở đây chắc không có ai làm cho bạn đâu
đề nó hại não lắm
a, Xét \(x\ge24\), ta có: x-24+x+8=1
=> 2x-16 = 1
=> 2x = 17
=> x = 17/2 (loại)
Xét \(-8\le x< 24\), ta có: -x+24+x+8 = 1 => 32 = 1 (loại)
Xét x < -8, ta có: -x+24-x-8 = 1
=> -2x+16 = 1
=> -2x = -15
=> x = 15/2
Vậy không có x thỏa mãn đề bài
b, Vì \(\hept{\begin{cases}\left|x-40\right|\ge0\\\left|x-y+10\right|\ge0\end{cases}\Rightarrow\left|x-40\right|+\left|x-y+10\right|\ge0}\)
Mà \(\left|x-40\right|+\left|x-y+10\right|\le0\)
\(\Rightarrow\hept{\begin{cases}\left|x-40\right|=0\\\left|x-y+10\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=40\\y=50\end{cases}}}\)
Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\y^{2018}\ge0\end{cases}}\) => \(\left(x+1\right)^2+y^{2018}=0\)
<=> \(\hept{\begin{cases}\left(x+1\right)^2=0\\y^{2018}=0\end{cases}}\)<=> \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)
|6-2x|+|x-13|=0
\(\orbr{\begin{cases}6-2x=0\\x-13=0\end{cases}}\)
\(\orbr{\begin{cases}2x=6-0=6\\x=0+13=13\end{cases}}\)
\(\orbr{\begin{cases}x=6:2=3\\x=13\end{cases}}\)
Vậy x thuộc {3,13}
Ta có: \(\hept{\begin{cases}|x-40|\ge0;\forall x,y\\|x-y+10|\ge0;\forall x,y\end{cases}}\)
\(\Rightarrow|x-40|+|x-y+10|\ge0;\forall x,y\)
Do đó: \(|x-40|+|x-y+10|=0\)
\(\Leftrightarrow\hept{\begin{cases}|x-40|=0\\|x-y+10|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=40\\y=50\end{cases}}\)