K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

=(x2+2xy+y2)+(y2-4yz+4z2)+(y2-2y+1)+(z2-2z+1)-4x-2y-4z+5

=(x+y)2-4(x+y)+4 +(y-2z)2+2(y-2z)+1 +(y-1)2+(z-1)2

=(x+y-2)2+(y-2z+1)2+(y-1)2+(z-1)2\(\ge0\)\(\forall_{x,y,z}\)

Lai co (x+y-2)2+(y-2z+1)2+(y-1)2+(z-1)2\(\le\)0

=> (x+y-2)2+(y-2z+1)2+(y-1)2+(z-1)2=0

Dau = xay ra khi x=y=z=1

3 tháng 1 2018

đề có sai ko bạn

3 tháng 1 2018

\(x^2+2xy+4y+3y^2+3=0\)0

=>\(\left(x^2+2xy+y^2\right)\)+\(\left(2y^2+4y+2\right)+1\)=0

=>(x+y)2+2(y+1)2+1=0 (vo li)

=> đề sai khỏi làm 

12 tháng 8 2018

<=>(x2+y2+z2+2xy+2yz+2xz)+(x2+2x+1)+(y2+4y+4)=0

<=>(x+y+z)2+(x+1)2+(y+2)2=0

Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\Rightarrow\left(x+y+z\right)^2+\left(x+1\right)^2+\left(y+2\right)^2\ge0}\)

=>\(\hept{\begin{cases}x+y+z=0\\x+1=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}z=3\\x=-1\\y=-2\end{cases}}}\)

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

Lời giải:

a)

$(x-z)^2+(y-z)^2+y^2+z^2=2xy-2yz+6z-9$

$\Leftrightarrow x^2-2xz+z^2+(y-z)^2+y^2+z^2-2xy+2yz-6z+9=0$

$\Leftrightarrow x^2-2x(z+y)+(z^2+y^2+2yz)+(y-z)^2+(z^2-6z+9)=0$

$\Leftrightarrow x^2-2x(y+z)+(y+z)^2+(y-z)^2+(z-3)^2=0$

$\Leftrightarrow (x-y-z)^2+(y-z)^2+(z-3)^2=0$
Vì $(x-y-z)^2\geq 0; (y-z)^2\geq 0; (z-3)^2\geq 0$ với mọi $x,y,z\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì:

$(x-y-z)^2=(y-z)^2=(z-3)^2=0$

$\Rightarrow z=3; y=3; x=6$

b)

$x^2+3y^2+z^2+2xy-2yz-2x+4y+10=0$

$\Leftrightarrow (x^2+2xy+y^2)+(y^2-2yz+z^2)+y^2-2x+4y+10=0$

$\Leftrightarrow (x+y)^2+(y-z)^2+y^2-2(x+y)+6y+10=0$

$\Leftrightarrow (x+y)^2-2(x+y)+1+(y-z)^2+(y^2+6y+9)=0$

$\Leftrightarrow (x+y-1)^2+(y-z)^2+(y+3)^2=0$ (lập luận tương tự phần a)

$\Leftrightarrow y=z=-3; x=4$

6 tháng 8 2020

a) \(x^2+4y^2-6x-4y+10=0\)

\(\Leftrightarrow\left(x^2-6x+9\right)+\left(4y^2-4y+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(2y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-3=0\\2y-1=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{1}{2}\end{cases}}\)

b) \(2x^2+y^2+2xy-10x+25=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-10x+25\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-5\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-5\\x=5\end{cases}}\)

c) \(x^2+2xy+4x-4y-2xy+5=0\)

\(\Leftrightarrow x^2-4x-4y+5=0\)

Xem lại đề câu c).

6 tháng 8 2020

a) x2 + 4y2 - 6x - 4y + 10 = 0

<=> x2 - 6x + 9 + 4y2 - 4y + 1 = 0

<=> ( x - 3 )2 + ( 4y - 1 )2 = 0

<=> \(\hept{\begin{cases}x-3=0\\4y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{1}{4}\end{cases}}\)

b) 2x2 + y2 + 2xy - 10x + 25 = 0

<=> x2 + 2xy + y2 + x2 - 10x + 25 = 0

<=> ( x + y )2 + ( x - 5 )2 = 0

<=> \(\hept{\begin{cases}x+y=0\\x-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-5\\x=5\end{cases}}\)

c) Xem lại đề 

19 tháng 7 2018

x^2+2xy+y^2+y^2-2yz+z^2+y^2+4y+4+6-2x=0

(x+y)^2+(y-z)^2+(y+2)^2+2*(3-x)=0

y+2=0=>y=-2

y-z=0=>z=-2 

x+y=0=>x=2

19 tháng 7 2018

<=>(x2+2xy+y2)+(y2-2yz+z2)+(y2+6y+9)-(2x+2y)+1=0

<=>[(x+y)2-2(x+y)+1]+(y-z)2+(y+3)2=0

<=>(x+y-1)2+(y-z)2+(y+3)2=0

Vì \(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}\Rightarrow\left(x+y-1\right)^2+\left(y-z\right)^2+\left(y+3\right)^2\ge0}\)

\(\Rightarrow\hept{\begin{cases}x+y-1=0\\y-z=0\\y+3=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=1\\y-z=0\\y=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\z=-3\\y=-3\end{cases}}}\)

Vậy x=4,y=z=-3

a,   B=x2+4xy+y2+x2-8x+16+2012

       B=(x+y) 2+(x-4)2+2012

 Vậy B >=2012 ( Dấu "=" xảy ra khi x=4,y=-4)

b làm tương tự 

c,  9x2+6x+1+y2-4y+4+x2-4xz+4z2=0

     (3x+1)2+(y-4)2+(x-2z)2=0

    Vậy 3x+1=0 => x = -1/3

           y-4=0 => y=4

             x-2z=0  thế x=-1/3 ta được.      -1/3-2z=0 => z = -1/6

Bạn nhớ ghi lại đề minh không ghi đề 

           

a) \(B=2x^2+y^2+2xy-8x+2028\)

\(=\left(x^2+2xy+y^2\right)+\left(x^2-8x+4^2\right)+2012=\left(x+y\right)^2+\left(x-4\right)^2+2012\ge2012\)

\(MinB=2012\Leftrightarrow\hept{\begin{cases}x=4\\y=-4\end{cases}}\)

b)\(C=x^2+5y^2+4xy+2x+2y-7\)

\(=\left(x^2+4xy+4y^2\right)+\left(2x+4y\right)+1+\left(y^2-2y+1\right)-9\)

\(=\left(\left(x+2y\right)^2+2\left(x+2y\right)+1\right)+\left(y-1\right)^2-9=\left(x+2y+1\right)^2+\left(y-1\right)^2-9\ge9\)

\(MinC=-9\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

c)\(10x^2+y^2+4z^2+6x-4y-4xz+5=0\)

\(\Leftrightarrow\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}\)