Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2y^2=9\\ 2y^2\ge0;=>x^2\le9\\ =>x^2\in\left\{0;1;4;9\right\}\\ N\text{ếu}x^2=0\left(lo\text{ại}\right)\\ N\text{ếu}x^2=4=>\left(lo\text{ại}\right)\\ N\text{ếu}x^2=1=>y=2;-2\\ \)
Cứ thế vào như vậy nha nhóc
\(\text{ -2005 < l x +5 l _< 1}\text{ -2005 < l x +5 l _< 1}\) -2005 < l x +5 l \(\le\)1
xét l x +5 l \(\ge\)0
mà theo đề bài thì l x +5 l \(\le\)1
nên l x +5 l = 1 hoặc 0
nếu l x +5 l = 1
=) x +5 = 1
=) x = 1 - 5 = -4
nếu l x +5 l = 0
=) x +5 = 0
=) x = 0 - 5 = -5
=) \(x\in\left\{-5;-4\right\}\)
đăng kí kênh của V-I-S nha !
<=>\(\frac{2}{36}< \frac{3x}{36}< \frac{4y}{36}< \frac{1}{4}\)
=> 2<3x<4y<9
<=>\(\begin{cases}2< 3x< 9\\2< 4y< 9\\3x< 4y\end{cases}\)<=> \(\begin{cases}x=2\\y=2\end{cases}\)
vậy gtri x=2 và y=2 thỏa mãn
\(\frac{1}{18}< \frac{x}{12}< \frac{y}{9}< \frac{1}{4}\)
\(\Leftrightarrow\frac{2}{36}< \frac{3x}{36}< \frac{4y}{36}< \frac{9}{36}\)
\(\Leftrightarrow2< 3x< 4y< 9\)
\(\Leftrightarrow\)\(\begin{cases}3x\in B\left(3\right)\\4y\in B\left(4\right)\end{cases}\) \(\Rightarrow\) \(\begin{cases}3x\in\left\{3;6\right\}\\4y\in\left\{4;8\right\}\end{cases}\) \(\Rightarrow\) \(\begin{cases}x\in\left\{1;2\right\}\\y\in\left\{1;2\right\}\end{cases}\)
Vậy (x;y) \(\in\) {(1;1);(2;2)}