Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì \(x^2+y^2+z^2=1\)
\(\Rightarrow0\le x;y;z\le1\)
\(2P=2\left(xy+xz+yz\right)+x^2\left(y-z\right)^2+y^2\left(x-z\right)^2+z^2\left(x-y\right)^2-2\left(x^2+y^2+z^2\right)-2\)
\(2P-2=-\left(x-y\right)^2-\left(x-z\right)^2-\left(y-z\right)^2+x^2\left(y-z\right)^2+y^2\left(x-z\right)^2+z^2\left(x-y\right)^2\)
\(2P-2=\left(x^2-1\right)\left(y-z\right)^2+\left(y^2-1\right)\left(x-z\right)^2+\left(z^2-1\right)\left(x-y\right)^2\le0\)
\(2P-2\le0\)
\(2P\le2\)
\(P\le1\)
GTLN P là 1 khi x=y=z=\(\frac{\sqrt{3}}{3}\)
tth_new_dep_trai_lai_lang_solo_SOS_Ji_Chen_tuoi_tom nhờ mình đăng hộ nha!
1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2
= 4/9 .y.y.y . (3/2-3/2.y)^2
=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)
<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5
=4/9 . 243/3125
=108/3125
Đến đó tự giải
\(x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge2+2+2=6\)(BDT cô-si)
Dấu '=' xảy ra khi x=y=z=1 rồi thay vào tính dc P=3
\(x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=6\)
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}-2\right)+\left(y^2+\frac{1}{y^2}-2\right)+\left(z^2+\frac{1}{z^2}-2\right)=0\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2+\left(z-\frac{1}{z}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\\z-\frac{1}{z}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=1\\y^2=1\\z^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=\pm1\\z=\pm1\end{cases}}\)
=> \(P=x^{28}+y^{10}+z^{2017}=1+1+z^{2017}=2+z^{2017}\)
Với \(z=-1\Rightarrow P=1+1-1=1\)
Với \(z=1\Rightarrow P=1+1+1=3\)
Bài 2. a/ \(1\le a,b,c\le3\) \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\), \(\left(c-1\right).\left(c-3\right)\le0\)
Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)
\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)
Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1
b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\)
Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)
Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay
\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)
\(x^2\left(y-1\right)\) +\(y^2\left(x-1\right)\) =1 \(\Leftrightarrow\) \(x^2y-x^2+y^2x-y^2=1\) \(\Leftrightarrow\) \(-\left(4+x^2+y^2+4x+2xy+4y\right)+4+4x+2xy+4y+x^2y+y^2x=1\) \(\Leftrightarrow\) \(-\left(2+x+y\right)^2+xy\left(2+x+y\right)+4\left(2+x+y\right)-4=1\) \(\Leftrightarrow\) \(\left(2+x+y\right)\left(-x-y-2+xy+4\right)=5\) \(\Leftrightarrow\left(x+y+2\right)\left(xy-x-y+2\right)=5\) rồi đưa về pt ước số là được(5 là số nguyên tố)