K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2021

a, mình nghĩ đề là cm đẳng thức nhé 

\(VT=\left(5x^4-3x^3+x^2\right):3x^2=\frac{5x^4}{3x^2}-\frac{3x^3}{3x^2}+\frac{x^2}{3x^2}=\frac{5}{3}x^2-x+\frac{1}{3}=VP\)

Vậy ta có đpcm 

b, \(VT=\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)=\frac{5xy^2}{-xy}+\frac{9xy}{-xy}-\frac{x^2y^2}{-xy}\)

\(=-5y-9+xy=VP\)

Vậy ta có đpcm 

c, \(VT=\left(x^3y^3-x^2y^3-x^3y^2\right):x^2y^2=\frac{x^3y^3}{x^2y^2}-\frac{x^2y^3}{x^2y^2}-\frac{x^3y^2}{x^2y^2}=xy-y-x=VP\)

Vậy ta có đpcm 

20 tháng 8 2017

\(a,x^3\left(3x^2-x-\dfrac{1}{2}\right)\)

\(=3x^5-x^4-\dfrac{1}{2}x^3\)

\(b,\left(5xy-x^2+y\right).\dfrac{2}{5xy^2}\)

\(=\dfrac{2}{y}-\dfrac{2x}{5y^2}+\dfrac{2}{xy}\)

\(c,\left(4x^3-3xy^2+2xy\right)\left(-\dfrac{1}{3}x^2y\right)\)

\(=-\dfrac{4x^5y}{3}+x^3y^3-\dfrac{2x^3y^2}{3}\)

15 tháng 7 2016

c) (xy-1).(xy+5)

= x2y2+5xy-xy-5

=x2y2+4xy-5

a) b) d) bạn có thể ghi rõ được ko

15 tháng 7 2016

may mk không ghi dc kiểu kia chỉ ghi dc thế này thôi

 

2 tháng 3 2020

1) 2x + 2y - x(x+y)

= 2(x + y) - x(x + y)

= (2 - x)(x + y)

2/ 5x2 - 5xy -10x + 10y

= 5x(x - y) - 10(x - y)

= (5x - 10(x - y)

3/ 4x2 + 8xy - 3x - 6y

= 4x(x + 2y) - 3(x + 2y)

= (4x - 3)(x + 2y)

2 tháng 3 2020

1) 2x + 2y - x(x + y) 

= 2(x + y) - x(x + y)

= (2 - x)(x + y)

2) 5x2 - 5xy - 10x + 10y 

= 5x(x - y) - 10(x - y)

= (5x - 10)(x - y)

= 5(x - 2)(x - y)

3) 4x2 + 8xy - 3x - 6y  

= 4x(x + 2y) - 3(x + 2y)

= (4x - 3)(x + 2y)

4) 2x2 + 2y2 - x2z + z - y2z - 2 

= 2(x2 + y2 - z(x2 + y2) - (2 - z)

= (2 - z)(x2 + y2) - (2 - z)

= (2 - z)(x2 + y2)

5) x2 + xy - 5x - 5y

= x(x + y) - 5(x + y)

= (x - 5)(x + y)

6) x(2x - 7) - 4x + 14 

= x(2x - 7) - 2(2x - 7) 

= (x - 2)(2x - 7)

7)x2 - 3x + xy - 3y  

= x(x + y) - 3(x + y)

= (x - 3)(x + y)

d. \(\left(x-3y\right)\left(3x^2+y^2+5xy\right)\)

\(=3x^3+xy^2+5x^2y-9x^2y-3y^3-15xy^2\)

\(=3x^3-14xy^2-4x^2y-3y^3\)

Bài 2:

a. \(x^2-y^2-5x+5y\)

\(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)

\(=\left(x+y-5\right)\left(x-y\right)\)

b. \(x^3-x^2-4x^2+8x-4\)

\(=x^2\left(x-1\right)-4\left(x^2-2x+1\right)\)

\(=x^2\left(x-1\right)-4\left(x-1\right)^2\)

\(=\left(x-1\right)\left[x^2-4\left(x-1\right)\right]\)

\(=\left(x-1\right)\left(x^2-4x+4\right)\)

\(=\left(x-1\right)\left(x-2\right)^2\)

Bài 3:

\(87^2+26.87+13^2\)

\(=\left(87+ 13\right)^2\)

\(=100^2\)

\(=10000\)

Bài 1:

a. \(3x^2\left(5x^2-4x+3\right)\)

\(=15x^4-12x^3+9x^2\)

b. \(-5xy\left(3x^2y-5xy-y^2\right)\)

\(=-15x^3y^2+25x^2y^2+5xy^3\)

c. \(\left(5x^2-4x\right)\left(x-3\right)\)

\(=5x^3-19x^2-4x^2+12x\)

AH
Akai Haruma
Giáo viên
7 tháng 7 2019

5.

\(4x^5y^2+8x^4y^3+4x^3y^4=4x^3y^2(x^2+2xy+y^2)\)

\(=4x^3y^2(x+y)^2\)

9.

\(4x^5y^2+16x^4y^2-6x^3y^2=2x^3y^2(2x^2+4x-3)\)

13.

\(-3x^4y+6x^3y-3x^2y=-3x^2y(x^2-2x+1)=-3x^2y(x-1)^2\)

17.

\(8x^3-8x^2y+2xy^2=2x(4x^2-4xy+y^2)\)

\(=2x[(2x)^2-2.2x.y+y^2]=2x(2x-y)^2\)

AH
Akai Haruma
Giáo viên
7 tháng 7 2019

21.

\((a^2+4)^2-16a^2b^2=(a^2+4)^2-(4ab)^2\)

\(=(a^2+4-4ab)(a^2+4+4ab)\)

25.

\(100a^2-(a^2+25)^2=(10a)^2-(a^2+25)^2\)

\(=(10a-a^2-25)(10a+a^2+25)\)

\(=-(a^2-10a+25)(a^2+10a+25)=-(a-5)^2(a+5)^2\)

29.

\(25a^2b^2-4x^2+4x-1=25a^2b^2-(4x^2-4x+1)\)

\(=(5ab)^2-(2x-1)^2=(5ab-2x+1)(5ab+2x-1)\)