\(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2017

do y>x>0 => \(5^y>5\Rightarrow5^y⋮5\)

Mặt khác, \(2^x,2^x+1,2^x+2,2^x+3,2^x+4\)là 5 số tự nhiên liên tiếp và \(2^x\)không tận cùng bằng 0

=> \(2^x\)+1 hoặc \(2^x\)+3 chia hết cho 5

=> VT \(⋮\)5

Mà 11879 không chia hết cho 5

=> không tồn tại x,y thỏa mãn

23 tháng 5 2017

a, [x+1]2 + [y+5]2 = 16

Theo đề, ta có: 0 \(\le\)[x+1]\(\le\)16; 0\(\le\)[y+5]2 \(\le\)16

Dễ dàng nhận thấy [x+1]2 và [y+5]2 là hai số chính phương, mà từ 0 - 16 chỉ có hai số chính phương 0 và 16 là có tổng là 16

=> Có hai trường hợp:

\(\hept{\begin{cases}\left[x+1\right]^2=0\\\left[y+5\right]^2=16\end{cases}\Rightarrow}\hept{\begin{cases}x+1=0\\\hept{\begin{cases}y+5=4\\y+5=-4\end{cases}}\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases};}\hept{\begin{cases}x=-1\\y=-9\sqrt[]{}\sqrt[]{}\end{cases}}}\)

14 tháng 8 2019

a, th1 : 2- x +2=x

<=> X=2

Th2: -2 +x +2= x

<=> X có vô sốnghiệm

14 tháng 8 2019

B1: a, |2 - x| + 2 = x

=> |2 - x| = x - 2

Dễ thấy (2 - x) và số đối của (x - 2)

=> |2 - x| = x - 2

=> 2 - x ≤ 0

=> x  ≥ 2

b, Điều kiện: x + 7 ≥ 0 => x  ≥ -7

Ta có: |x - 9| = x + 7

\(\Rightarrow\orbr{\begin{cases}x-9=x+7\\x-9=-x-7\end{cases}\Rightarrow}\orbr{\begin{cases}0x=16\left(loai\right)\\2x=2\end{cases}\Rightarrow x=1}\left(t/m\right)\)

AH
Akai Haruma
Giáo viên
18 tháng 7 2019

Bài 1:

\((x-1)^2\geq 0, \forall x\in\mathbb{Z}\Rightarrow 2(y-3)^2=3-(x-1)^2\leq 3\)

\(\Rightarrow (y-3)^2\leq \frac{3}{2}\)

\((y-3)^2\geq 0; (y-3)^2\in\mathbb{Z}\) nên \(\left[\begin{matrix} (y-3)^2=0\\ (y-3)^2=1\end{matrix}\right.\)

Nếu \((y-3)^2=0\):

\((x-1)^2=3-2(y-3)^2=3\) (vô lý với $x$ nguyên)

Nếu \((y-3)^2=1\Rightarrow y-3=\pm 1\Rightarrow \left[\begin{matrix} y=4\\ y=2\end{matrix}\right.\)

\((x-1)^2=3-2(y-3)^2=3-2=1\Rightarrow x-1=\pm 1\Rightarrow \left[\begin{matrix} x=0\\ x=2\end{matrix}\right.\)

Vậy \((x,y)=(0,4); (0,2); (2,4); (2,2)\)

AH
Akai Haruma
Giáo viên
18 tháng 7 2019

Bài 2:

Dễ thấy vế trái của đẳng thức đã cho không âm (tính chất trị tuyệt đối)

\(\Rightarrow 2018x=\text{VT}\geq 0\Rightarrow x\geq 0\)

\(\Rightarrow \left\{\begin{matrix} |x+1|=x+1\\ |x+2|=x+2\\ |x+3|=x+3\\ ....\\ |x+2019|=x+2019\end{matrix}\right.\)

Phương trình trở thành:

\((x+1)+(x+2)+(x+3)+....+(x+2019)=2018x\)

\(\Leftrightarrow 2019x+2029095=2018x\)

\(\Leftrightarrow x=-2029095< 0\) (vô lý- loại)

Vậy không tồn tại $x$ thỏa mãn.

29 tháng 4 2019

đổi k ko,mk hứa sẽ k lại(nếu ko làm chó!!!!!!!!!!!!!)

29 tháng 4 2019

Bài 1: <Cho là câu a đi>:

a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\) 

\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\) 

\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\) 

\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\) 

\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\) 

\(\rightarrow x+1=50\rightarrow x=49\) 

Vậy x = 49.

27 tháng 8 2020

a) Ta có: 8 chia hết cho (n+2)

=> \(n+2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

=> \(n\in\left\{-10;-6;-4;-3;-1;0;2;6\right\}\)

b) Ta có: \(5=1.5=\left(-1\right).\left(-5\right)\)

Từ đó bạn lập bảng xét các TH là ra thôi nhé:)

c) \(12=1.12=2.6=3.4=\left(-1\right).\left(-12\right)=\left(-2\right).\left(-6\right)=\left(-3\right).\left(-4\right)\)

Cũng tương tự b bạn lập bảng xét các TH ra nhưng ở đây, vì 2y-1 lẻ với mọi y

=> x chẵn và 2y-1 lẻ thuận tiện cho việc xét hơn