Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ko bít đề bắt làm j
b)Px=x(1+x+x2+...+x2015+x2018)
Px=x+x2+...+x2017
Px-P=(x+x2+...+x2017)-(1+x+x2+...+x2015+x2018)
P(x-1)=x2017-1
P=(x2017-1)/(x-1)
x2+y2+z2=xy+yz+zx
<=>2x2+2y2+2z2-2xy-2yz-2xz=0
<=>(x-y)2+(y-z)2+(z-x)2=0
<=>x=y=z
Thay x=y=z vào x2014+y2014+z2014=32015 ta được:
3.x3014=3.32014
=>x2014=32014
=>x=3 hoặc x=-3
Vậy x=y=z=3 hoặc x=y=z=-3
\(x^2+2x+13=y^2\)
\(\Rightarrow4x^2+8x+52=4y^2\)
\(\Rightarrow\left(2x+2\right)^2+48=4y^2\)
\(\Rightarrow\left(2x+2\right)^2-4y^2=-48\)
\(\Rightarrow\left(2x-2y+2\right)\left(2x+2y+2\right)=-48\)
\(\Rightarrow\left(x-y+1\right)\left(x+y+1\right)=-12\) (1)
Ta có: \(x-y+1+x+y+1=2x+2⋮2\)
Do đó: x - y + 1 và x + y + 1 cùng tĩnh chẵn lẻ.
Mà \(x,y\in N\)nên \(x-y+1< x+y+1\) (2)
Từ (1) và (2) ta được: \(\hept{\begin{cases}x-y+1=-2\\x+y+1=6\end{cases}\Rightarrow\hept{\begin{cases}x-y=-3\\x+y=5\end{cases}\Rightarrow}}\hept{\begin{cases}x=1\\y=4\end{cases}}\) (thỏa mãn)
Vậy x = 1 và y = 4
a) Ta có :
abab = ab .101
Để abab là số chính phương thì ab chỉ có thể bằng 101.
Mà ab là số có hai chữ số
=> abab không phải là số chính phương
còn lại tự làm
mik làm có đúng ko ?
x2+y2+z2=xy+yz+zx
<=>2x2+2y2+2z2-2xy-2yz-2xz=0
<=>(x-y)2+(y-z)2+(z-x)2=0
<=>x=y=z
Thay x=y=z vào x2014+y2014+z2014=32015 ta được:
3.x3014=3.32014
=>x2014=32014
=>x=3 hoặc x=-3
Vậy x=y=z=3 hoặc x=y=z=-3
a
Ta có \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( đúng )
\(\Rightarrow x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{3^2}{3}=3\)
Dấu "=" xảy ra tại a=b=c=1
b
\(P=\frac{x}{\left(x+10\right)^2}\)
Đặt \(y=\frac{1}{x+10}\Rightarrow x=\frac{1}{y}-10\)
\(\Rightarrow P=\left(\frac{1}{y}-10\right)\cdot y^2=-10y^2+y\)
\(=-10\left(y^2-2\cdot y\cdot\frac{1}{20}\cdot y+\frac{1}{400}\right)+\frac{1}{40}\)
\(=-10\left(y-\frac{1}{2}\right)^2+\frac{1}{40}\le\frac{1}{40}\)
Dấu "=" xảy ra tại \(y=\frac{1}{2}\Leftrightarrow x=10\)
Vậy...............................