Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x ; y ; z \(\in\)\(ℤ\)biết :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
P/s : Làm đc duyệt luôn =))
giả sử: x ≥ y ≥ z > 0 => 1/x ≤ 1/y ≤ 1/z
=> 1 = 1/x + 1/y + 1/z ≤ 1/z + 1/z + 1/z = 3/z => z ≤ 3 => z = 1,2,3
với z = 1 => 1/x + 1/y = 0 vô lý vì x,y ∈ N*
với z = 2 => 1/x + 1/y = 1/2 => 1/2 = 1/x + 1/y ≤ 2/y => y ≤ 4 =>y = 2,3,4 (vì y≤ z)
---y = 2 => 1/x = 0 vô lý (loại)
---y = 3 => 1/x = 1/2 - 1/3 = 1/6 => x = 6
---y = 4 => 1/x = 1/2 - 1/4 = 1/4 => x = 4
với z = 3 => 1/x + 1/y = 1 - 1/3 = 2/3 => 2/3 = 1/x +1/y ≤ 2/y => y ≤ 3 => y = 3 (vì y≤ z)
=> x = 3
vậy (*) có nghiệm (x;y;z) = (6;3;2) (4;4;2)(3,3;3) và các hoán vị của các bộ 3 trên.
\(\frac{-2}{x}=\frac{y}{3}\)
=> x.y=-6
=> Ta có các bộ (x,y) là (-1;6),(1;-6),(-2;3),(2;-3),(6;-1),(-6;1),(3;-2),(-3;2)
\(\frac{13}{x}=\frac{y}{1}\)
=>x.y=13
Ta có các bộ số (x,y) là (-1;-13);(1;13);(-13;-1),(13;1)