Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)
A=\(\dfrac{x-y}{x+y}\)
=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)
=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)
vì y>x>0=> A=-1/2
câu 1 :
Giả sử :
x \(\le\) y
=> \(2^x+2^y\ge2.2^x\)
=> \(2^{x+y}\ge2^x.2\)
=> \(2^x.2^y\ge2^x.2\)
=> \(2^y\ge2\)
Lại có :
\(2^x+2^y\le2.2^y\)
=> \(2^x.2^y\le2.2^y\)
=> \(2^x\le2\)
=> \(2\le2^x\le2^y\le2\)
=> \(2^x=2^y=2\)
=> x = y = 1
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
\(\frac{x^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}+\frac{y^2}{a^2+b^2+c^2}-\frac{y^2}{b^2}\)\(+\frac{z^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}=0\)
\(x^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)\)\(+y^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)\)\(=0\)
Vì \(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\ne0,\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\ne0\)\(,\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\ne0\) và \(a,b,c\ne0\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\\z^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\)\(\Rightarrow T=0\)