Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm các số nguyên x, y thỏa mãn 2x + 3y =19 và \(\dfrac{1}{3}\) < \(\dfrac{x}{y}\)< \(\dfrac{1}{2}\)
\(\dfrac{1}{3}< \dfrac{x}{y}< \dfrac{1}{2}\Rightarrow\dfrac{4}{12}< \dfrac{x}{y}< \dfrac{6}{12}\Rightarrow\dfrac{x}{y}=\dfrac{5}{12}\Rightarrow\dfrac{x}{5}=\dfrac{y}{12}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{5}=\dfrac{y}{12}=\dfrac{2x}{10}=\dfrac{3y}{36}=\dfrac{2x+3y}{10+36}=\dfrac{19}{46}\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{95}{46}\\y=\dfrac{114}{23}\end{matrix}\right.\)
Mà \(x,y\in Z\)
Vậy ko có x,y nguyên thỏa mãn đề
Bài 1:
b) ĐKXĐ: \(x\ne3\)
Ta có: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\dfrac{x-3}{-20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\left(x-3\right)^2=100\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\left(nhận\right)\\x=-7\left(nhận\right)\end{matrix}\right.\)
Vậy: \(x\in\left\{13;-7\right\}\)
1) \(M=\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}=\dfrac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}=\dfrac{2^{20}}{2^{12}}=256\)
2) \(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Leftrightarrow2x+2y=6x-3y\Leftrightarrow4x=5y\Leftrightarrow\dfrac{x}{y}=\dfrac{5}{4}\)
Bài 1:
\(a,\dfrac{x}{3}=\dfrac{y}{7}\) và \(x+y=20\)
\(=\dfrac{x+y}{3+7}=\dfrac{20}{10}=2\)
\(\Rightarrow x=2.3=6\)
\(y=2.7=14\)
Vậy \(x=6\) và \(y=14\)
\(b,\dfrac{x}{5}=\dfrac{y}{2}\) và \(x-y=6\)
\(=\dfrac{x-y}{5-2}=\dfrac{6}{3}=2\)
\(\Rightarrow x=2.5=10\)
\(y=2.2=4\)
Vậy \(x=10\) và \(y=4\)
\(c,\dfrac{x}{7}=\dfrac{18}{14}\)
Từ tỉ lệ thức trên ta có:
\(14x=7.18\)
\(x=\dfrac{7.18}{14}\)
\(x=9\)
Vậy \(x=9\)
\(d,6:x=1\dfrac{3}{4}:5\)
\(6:x=\dfrac{7}{20}\)
\(x=6:\dfrac{7}{20}\)
\(x=\dfrac{120}{7}\)
Vậy \(x=\dfrac{120}{7}\)
\(e,\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\) và \(x-y+z=8\)
\(=\dfrac{x-y+z}{2-4+6}=\dfrac{8}{4}=2\)
\(\Rightarrow x=2.2=4\)
\(y=2.4=8\)
\(z=2.6=12\)
Vậy \(x=4;y=8;z=12\)
a, \(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x+y}{3+7}=\dfrac{1}{2}\)
Từ đó suy ra x=1,5; y=3,5
b,\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x-y}{5-2}=\dfrac{1}{2}\)
Từ đó suy ra x=2,5; y=1
c,\(\dfrac{x}{7}=\dfrac{18}{14}\Leftrightarrow\dfrac{x}{7}=\dfrac{9}{7}\Rightarrow x=9\)
d,\(\dfrac{6}{x}=\dfrac{\dfrac{7}{4}}{5}\Leftrightarrow\dfrac{6}{x}=\dfrac{24}{7}\left(\dfrac{\dfrac{7}{4}}{5}\right)\Leftrightarrow\dfrac{6}{x}=\dfrac{6}{\dfrac{120}{7}}\Rightarrow x=\dfrac{120}{7}\)
e,\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{8}=\dfrac{x-y+z}{2-4+8}=\dfrac{4}{3}\)
Từ đó suy ra x=\(\dfrac{8}{3}\); y=\(\dfrac{16}{3}\); z=\(\dfrac{32}{3}\)
\(a,A=\dfrac{\dfrac{3}{4}-\dfrac{3}{11}+\dfrac{3}{13}}{\dfrac{5}{7}-\dfrac{5}{11}+\dfrac{5}{13}}+\dfrac{\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}}{\dfrac{5}{4}-\dfrac{5}{6}+\dfrac{5}{8}}\\ A=\dfrac{\dfrac{405}{572}}{\dfrac{645}{1001}}+\dfrac{\dfrac{5}{12}}{\dfrac{25}{24}}\\ A=\dfrac{189}{172}+\dfrac{2}{5}\\ A=\dfrac{1289}{860}\)
\(\dfrac{x+2}{3}=\dfrac{y-5}{-4}=\dfrac{z+1}{5}\Rightarrow\dfrac{2x+4}{6}=\dfrac{3y-15}{-12}=\dfrac{z+1}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x+4}{6}=\dfrac{3y-15}{-12}=\dfrac{z+1}{5}=\dfrac{2x+4-3y+15+z+1}{6-\left(-12\right)+5}=\dfrac{\left(2x-3y+z\right)+\left(4+15+1\right)}{23}=\dfrac{72+20}{23}=\dfrac{92}{23}=4\)
\(\dfrac{x+2}{3}=4\Rightarrow x+2=12\Rightarrow x=10\\ \dfrac{y-5}{-4}=4\Rightarrow y-5=-16\Rightarrow y=-11\\ \dfrac{z+1}{5}=4\Rightarrow z+1=20\Rightarrow z=19\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+2}{3}=\dfrac{y-5}{-4}=\dfrac{z+1}{5}=\dfrac{2x-3y+z+4+15+1}{2\cdot3-3\cdot\left(-4\right)+5}=\dfrac{92}{23}=4\)
Do đó: x=10; y=-11; z=4
\(\dfrac{x}{8}-\dfrac{1}{4}=\dfrac{1}{y}\)
\(\Leftrightarrow\dfrac{x-2}{8}=\dfrac{1}{y}\)
\(\Leftrightarrow x-2=\dfrac{8}{y}\)
Do \(x-2\in Z\Rightarrow\dfrac{8}{y}\in Z\)
\(\Rightarrow y=Ư\left(8\right)\)
\(\Rightarrow y=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow x=\left\{1;0;-2;-6;10;6;4;3\right\}\)