K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GL
10
Các câu hỏi dưới đây có thể giống với câu hỏi trên
VT
0
KQ
1
11 tháng 1 2019
\(2^{x+1}\cdot3^y=12^x\)
\(2^{x+1}\cdot3^y=\left(2^2\cdot3\right)^x\)
\(2^{x+1}\cdot3^y=2^{2x}\cdot3^x\)
\(\Rightarrow\hept{\begin{cases}x+1=2x\\x=y\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Vậy x = y = 1
HD
2
QT
0
DC
0
Thử cách này của em xem ạ... lâu rồi không làm dạng này nên không rành lắm :(
Với x = 0 thì y = 1 (TM)
Với x = 1 thì y = 1 (TM)
Ta sẽ chứng minh với x > 2 thì không tồn tại y. (*) Thật vậy:
Với x = 2 thì y = 3 \(\Rightarrow\) (*) đúng với x =2
Giả sử (*) đúng với x = k > 2; \(k\inℕ\). Tức là \(1!+2!+3!+...+k!\ne y^3\)
Cần chứng minh nó đúng với x = k + 1.Tức là chứng minh \(1!+2!+3!+...+k!+\left(k+1\right)!\ne y^3\) (1)
\(\Leftrightarrow\left(1!+2!+3!+...+k!\right)-y^3+\left(k+1\right)!\ne0\)
Theo giả thiết quy nạp suy ra \(\left(1!+2!+3!+...+k!\right)-y^3+\left(k+1\right)!\ne y^3-y^3+\left(k+1\right)!=\left(k+1\right)!>0\forall k\inℕ\)
Do vậy (1) đúng nên theo nguyên lí quy nạp suy ra (*) đúng.
Vậy (x;y) = { (0;1) ; (1;1) }
Với \(x=0\Rightarrow y=1\left(TM\right)\)
Với \(x=1\Rightarrow y=1\left(TM\right)\)
Với \(x=2\Rightarrow y^3=1+1\cdot2=3\Rightarrow y=\sqrt[3]{3}\left(KTM\right)\)
Với \(x=3\Rightarrow y^3=1+1\cdot2+1\cdot2\cdot3=9\Rightarrow y=\sqrt[3]{9}\left(KTM\right)\)
Với \(x=4\Rightarrow y^3=1+1\cdot2+1\cdot2\cdot3+1\cdot2\cdot3\cdot4=33\Rightarrow y=\sqrt[3]{33}\left(KTM\right)\)
Với \(x=5\Rightarrow y^3=1+1\cdot2+1\cdot2\cdot3+1\cdot2\cdot3\cdot4+1\cdot2\cdot3\cdot4\cdot5=33+120\) có tận cùng là 3.
Cứ tiếp tục như vậy thì \(y^3\) luôn có dạng \(33+\overline{...0}\).
Mà lập phương của 1 số tự nhiên thì không tận cùng là 3 nên \(\left(x;y\right)=\left\{0;1\right\};\left\{1;1\right\}\)