K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NN
1
AH
Akai Haruma
Giáo viên
6 tháng 7 2024
Lời giải:
$\frac{x}{y}=\frac{3}{2}\Rightarrow x=\frac{3}{2}y$
$\frac{1}{xy}=6$
$\Rightarrow xy=\frac{1}{6}$
$\Rightarrow \frac{3}{2}y.y=\frac{1}{6}$
$\Rightarrow y^2=\frac{1}{9}=(\frac{1}{3})^2=(\frac{-1}{3})^2$
Vì $y<0$ nên $y=\frac{-1}{3}$
$x=\frac{3}{2}y=\frac{3}{2}.\frac{-1}{3}=\frac{-1}{2}$
Mà $\frac{-1}{2}< \frac{-1}{3}$ nên loại (do $x> y$)
Vậy không tồn tại $x,y$ thỏa mãn đề.
MV
0
28 tháng 7 2017
\(\frac{x}{3}=\frac{y}{5}\)và x + y = 16
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)
\(\frac{x}{3}=2\Rightarrow x=2.3=6\)
\(\frac{y}{5}=2\Rightarrow y=2.5=10\)
Vậy...
BT
0
a, Câu a rùi nhá.
b, <=> \(4x+4y-xy=0\)
<=> \(x\left(4-y\right)=-4y\)
<=> \(x=\frac{4y}{y-4}\) Vì x nguyên nên : \(y-4\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
=> \(y=\left\{5;3;6;2;8;0\right\}\)
=> \(x=\left\{20;-12;12;-4;8;0\right\}\)
Xét đk ta được cặp số : \(\left(x;y\right)=\left\{\left(20;5\right);\left(12;6\right);\left(8;8\right);\left(0;0\right)\right\}\)
c, \(6x+6y+1-xy=0\)
<=> \(x\left(6-y\right)+\left(6y+1\right)=0\)
<=> \(x=\frac{6y+1}{y-6}=\frac{6\left(y-6\right)+37}{y-6}=6+\frac{37}{y-6}\)
Vì x nguyên nên : \(\frac{37}{y-6}\in Z\) <=> \(y-6\inƯ\left(37\right)=\left\{1;-1;37;-37\right\}\)
=> \(y=\left\{7;5;43;-31\right\}\) => \(x=\left\{37;-37;1;-1\right\}\)
Kết hợp với đk ta được cặp số : \(\left(x;y\right)=\left\{\left(37;7\right);\left(-1;-31\right)\right\}\)